

Ecodesign of a launch service based on a semi-reusable minilauncher

Loïs Miraux, environmental and cost engineer

2022 ESA Clean Space Industry Days 12/10/2022

Agenda

- 1. MaiaSpace vision
- 2. Preliminary LCA and ecodesign analysis
 - Previous work
 - Mitigation potential
 - Does reusability reduce impacts?
- 3. Way forward

OUR VISION

Space stands as a major enabler for a better and more sustainable life on Earth

OUR MISSION

Provide competitive, flexible and sustainable space transportation solutions

OUR TARGETS

Leader European minilauncher

Best impact on Earth environment

Best impact on space environment

Access to space sovereignty & European leadership

Colibri kick-stage

Prometheus engine

1st launch End 2025

ONE LAUNCHER OFFERING TWO PERFORMANCE OPTIONS AND A COMPELLING SOLUTION FOR CONSTELLATIONS

OUR SOLUTIONS

Reusable, eco-designed and dual-performance launcher 500kg SSO 500km and 1500kg SSO 700km performance In-Orbit services Last miles delivery, Debris Removal...

SUSTAINABILITY IS OF THE ESSENCE ECO-RESPONSIBILITY IS EMBEDDED IN MAIA SPACE STRATEGY, CULTURE, PROCESSES, SERVICES AND PRODUCTS.

Ambitious environmental impact reduction

Eco-design from the start

Advanced methodology paving the way for space activities Full Life Cycle Analysis

Frugality to optimise our resources (material, energy, time)

Low emissions and shared shipment from mainland France to French Guiana

Launcher first stage reusability

Bio-methane fuel Very low soot emission Low carbon production Local production & resilient supply

High efficiency cryogenic propellant storage and operations

Systematic debris deorbitation, in addition to satellite injection mission For a clean space

Agenda

- 1. MaiaSpace vision
- 2. Preliminary LCA and ecodesign analysis
 - Previous work
 - Mitigation potential
 - Does reusability reduce impacts?
- 3. Way forward

Production of propellants: 33% CC ; 28% RD Transatlantic transport: 23% CC Launch event: 6% CC ; 100% OD Recovery and refurbishment: 10% CC and RD

PARAMETRIC LIFE CYCLE ASSESSMENT Presented at the 2021 Clean Space Industry Days

Life cycle phase Count over one year MAIT IS N_{Lower stage} / year MAIT Recovery kit N_{Browery kit} / year

Life cycle
parametrization

MAT Upper components

MAT Upper components

Manuscher / year

MAT Upper components

Manuscher / year

Launch Campaign

Launch Campaign

Launch Event

Recoverable mode: Nancoverbule / year

Launch Event

Recoverable mode: Nancoverbule / year

Cribit

Nancover and Refurbibitment

Nancover and Refurbibitment

Nancoverable

Year

Tansport

Nancover 1/55 (assumed lifetime)

Lifecycle parametrization (market, system, operations)

Parametrization with lifecycle phases occurences

Exploitatio

<u>Ô</u>;

3

ECODESIGN AND IMPACT MITIGATION POTENTIAL

In this presentation

Identification of main drivers 5 (sensitivity analysis)

6

Cumulative potential gains

All slides available in appendix

Parameters affecting Externa capability

parameters

Resource depletion

Parameters not

affecting capability

SENSITIVITY ANALYSIS

Transatlantic cargo speed

Transatlantic cargo filling rate

Climate change

Resource depletion

- Material buy-to-fly mass ratio
- RLV structural ratio
- ELV structural ratio

CUMULATIVE POTENTIAL GAINS (CLIMATE CHANGE)

CUMULATIVE POTENTIAL GAINS (RESOURCE DEPLETION)

DOES REUSABILITY REDUCE IMPACTS?

Agenda

- 1. MaiaSpace vision
- 2. Preliminary LCA and ecodesign analysis
 - Previous work
 - Mitigation potential
 - Does reusability reduce impacts?
- 3. Way forward

14

ECODESIGN ENGINEERING: IMPLEMENTATION

SPACE DEBRIS MITIGATION

RISK ANALYSIS

Design trade-off Supplier choice

Vulnerabilities and resilience to global change

Critical raw materials

Launch site CONOPS Infrastructures

KEY TAKEAWAYS

LCA of a launch service based on a semi-reusable launcher \rightarrow Presented at the 2021 Clean Space Industry Days

Ecodesign strategy

- In early design stages to maximize leverage
- Driving parameters identified (system-level and market-level)
- Potential mitigation of -34% on climate change and -33% on resource depletion identified (baseline already including biomethane and optimal industrial organization)
- Evaluation of the environmental benefits of reusability

Way forward

- Complete scope
- Investigate high-altitude effects
- Refine mitigation potential
- Implement ecodesign by managing various performance indicators
- Include space debris indicator
- Perform risk analysis

Proactive approach

- Contribution to building a common framework for environmental studies
- Open to data sharing

To go further

Parametric Life Cycle Assessment of a Space Launch Service Based on a LOx/Biomethane Semi-reusable Launcher, 73rd International Astronautical Congress (IAC), Paris, France.

Contact info:

Loïs Miraux

pis.miraux@mines-paristech.f