SWISS CAPTURE SYSTEM BASED ON

- Steward Platform
- Scripping System
- : High precision space
- :: mechanism

CAPTURE SYSTEM FOR SERVICING AND DEBRIS REMOVAL (CRUSSADER)

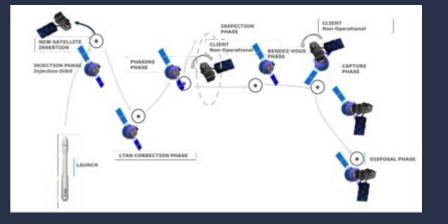
Emmanuel Onillon ECSEC FACING THE CHALLENGES OF OUR TIME

almatech

Overview

Key Specifications

Design


Next steps

CRUSSADER mission target

- CRUSSADER system will be able to catch Earth observation satellites up to 2 tons and equipped with a standardized interface "MICE". Main goal of the project is to achieve TRL6 for the system excluding the EGSE where TRL4 is requested.
- Objective: Catch and deorbit old spacecraft which are in an uncooperative state for replacing them with new ones which will take the same orbit.
- ESA funded activity

3

"CSEM ALMATECH

Overview

Key Specifications

Design

Next steps

Capture sequence

• The capture sequence is split into two phases:

 Phase 1: soft (topological) capture to ensure that the target cannot escape from the gripper during subsequence contact/capture phase. This shall be completed without transmitting a contact load to the target.

• Phase 2: hard capture/ rigidization phase to firmly secure the target.

#CSEM ALMATECH

Absolute Performance Errors (+/-) between Servicer and Chaser when the relative distance is < 1 m around any axis

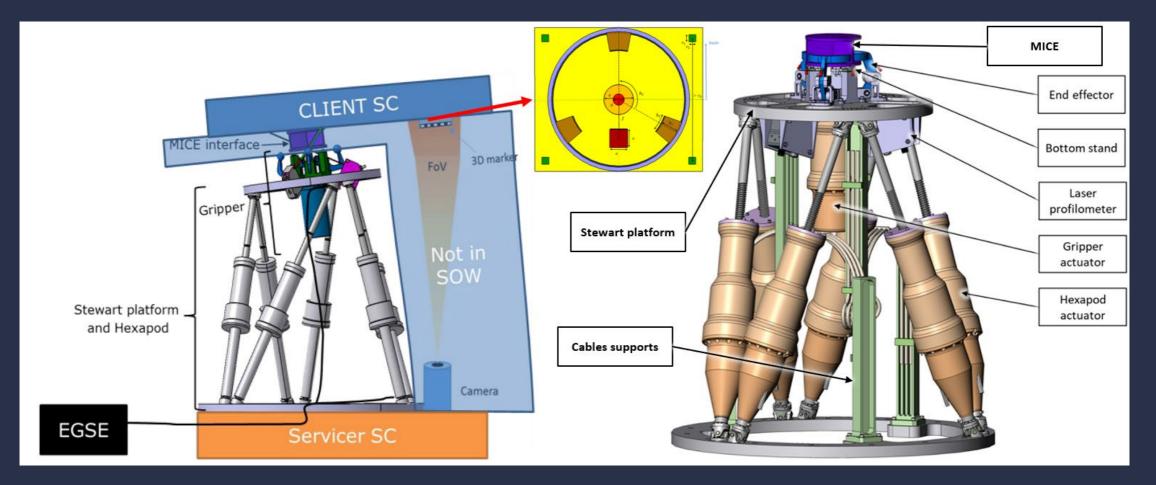
	Maximum absolute error	
Attitude [°]	3°	
Attitude rate [°/s]	0.25°/s	
Position [mm]	20 mm	
Position rate [mm/s]	5 mm/s	

- CRUSSADER is able to adjust the offset of the servicer and client face planes by ±5° post grasping.
- The rotation of the upper plate of the hexapod around Z-axis is ≥ 15° even completely deployed considering that the axis of the gripper and the hexapod are aligned with the Zaxis

CRUSSADER mass budget

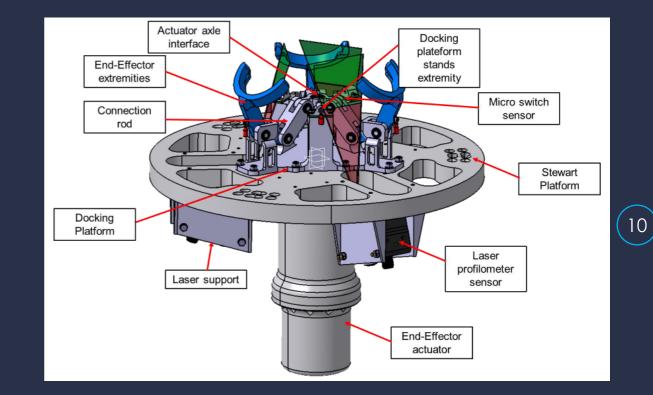
Items	Quantity	Mass [kg]	Total Mass [kg]
Actuators	6	3.39	20.32
Mobile harness holder	3	0.75	2.25
Gripper actuator	1	2.92	2.92
Base plate	1	4.96	4.96
Top plate	1	3.20	3.20
Gripper	1	2.03	2.03
Harness (mobile + fix)	1	0.96	0.96
Total			36.64

Overview


Key Specifications

Design

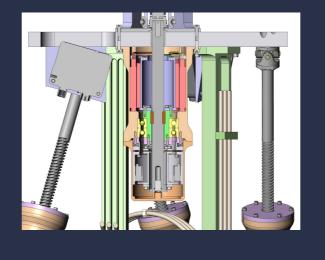
Next steps

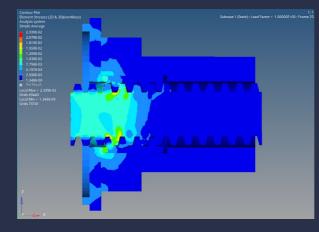

CRUSSADER concept

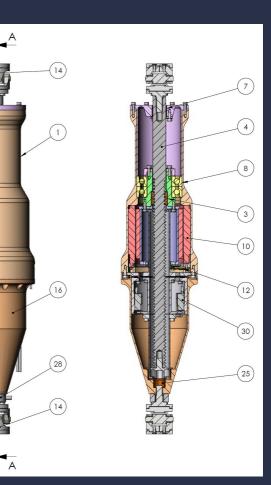
#CSEM ALMATECH

CRUSSADER end-effector

- Concept design highlights:
 - Use of the same actuator architecture as in hexapod
 - Embedded encoder sensor allow to retrieve exact opening status of the gripper
 - End position switches allow to confirm closed and open final positions of gripper for hard capture and release phase
 - Micro switches sensors to confirm presence of MICE and good Capture



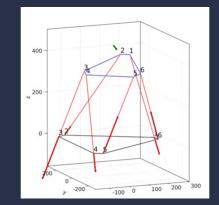

"CSEM ALMATECH

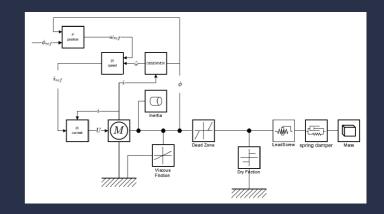

CRUSSADER actuators

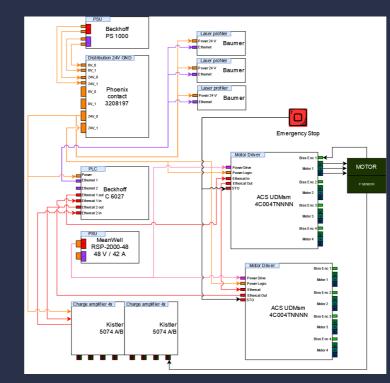
- Trade-off consolidation
- Actuator design :
 - Motor selection (brushless)
 - Plain bearing
 - > End-switch / end stops
 - Driving nut and lead screw
 - > Gimbal
 - Magneto-resistive encoder
- Actuator analysis :
 - > Load determination
 - \succ FEM on detailed parts
- Part preliminary sizing and ana Near CDR level achieved (motor, etc..) *«CSEM almatech*

CRUSSADER EGSE

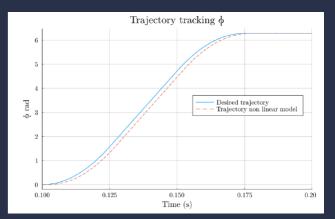
• Control law:


>Inverse kinematic


State space controller


▶Schematics

drivers


➢ Based on Beckhoff

12

#CSEM ALMATECH

• EGSE:

Overview

Key Specifications

Design

Next steps

(13)

NEXT STEPS

- Gripper End Effector BB \rightarrow Q4 2022
- Actuator Bread Board \rightarrow Q1 2023
- CRUSSADER CDR → Q1 2023
- Environmental and Functional Tests Q3 \rightarrow 2023
- DRB Q4 → 2023

THANKS !

Emmanmuel.onillon@csem.ch

