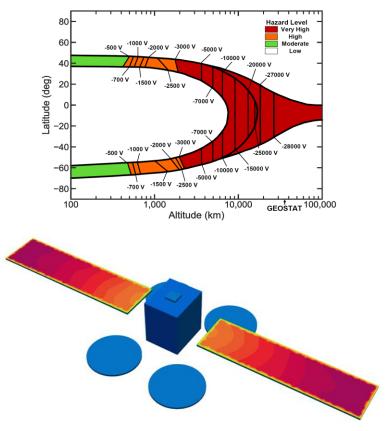
OHB System AG: ONERA: ESA-ESTEC: Jens Laube, Henning Wulf Sébastien Hess Andrew Wolahan, Grégoire Déprez

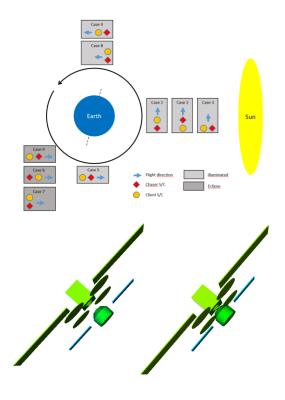
SPACE SYSTEMS


Charging and ESD risks during in-orbit rendezvous manoeuvres 2022 Clean Space Industry Days

We. Create. Space.

Electrostatic challenges for in-orbit servicing

- Electrostatic discharges are among the most severe threads for spacecraft electronics
- Spacecraft surfaces are generally designed to have a common electrostatic ground
- Safety of design can be verified from charging simulations
- But: During servicing separate S/C-circuits are brought into contact
- Uncontrolled arcing through the contact interface can have severe effects on both client and servicer S/C.


The In-orbit servicing ESD (IOSESD) project

- ESA-project: Activity No. 1000029621
- Title: "Characterising the Potential for Electrostatic Discharge (ESD) for In-Orbit Servicing Missions"
- Questions to answer:
 - What is the differential charging between 2 S/C under different In-Orbit Servicing (IOS) conditions?
 - What are the end-effects as a result of discharging
 - What are the solutions/technologies that could mitigate the endeffects.

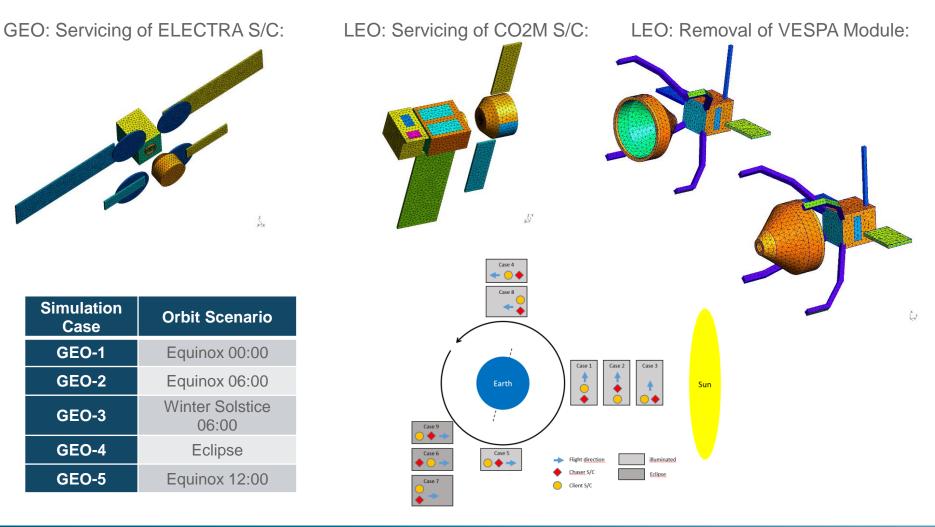
The In-orbit servicing ESD (IOSESD) project

- Approach:
 - Task 1: Analyse the differential charging between 2 S/C before the contact:
 - Orbits: LEO-ISS, LEO-SSO, GEO
 - Orientations: sun-shadow and wake
 - Configurations: Different potential S/C candidates
 - Task 2: Analyse the arcing during contact:
 - Final approach phase
 - Charge flow during contact
 - Resulting ESD-effect
 - Task 3: Evaluate the possible mitigation techniques
 - Operational mitigations
 - Design mitigations

Task 1 methods

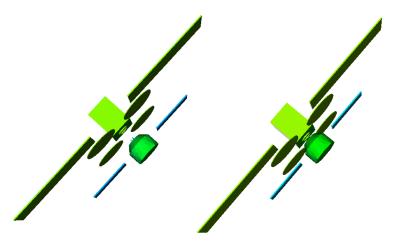
- S/C charging simulations with SPIS
- Static distance between S/C: 1 m
- GEO environment: ECSS worst Case
- LEO ISS environment: Ionospheric plasma conditions
- LEO SSO environment: auroral plasma depletion event (ECSS worst case)

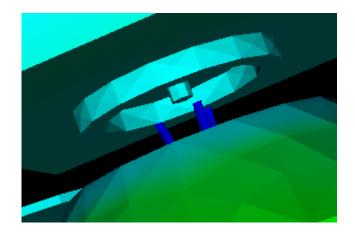
GEO:	Parameter	Electron-1	Ion-1 (H+)	Electron-2	lon-2 (H+)
	Density (m ⁻³)	7E5	6E5	1.2E6	1.3E6
	Temperature (eV)	400	200	27500	28000
	Drift velocity	0 m/s	0 m/s	0 m/s	0 m/s
	Simulation Method	Maxwell- Boltzmann	PIC	Maxwell- Boltzmann	PIC


EO ISS:	Parameter	Electron-1	lon-1 (O+)
	Density (m ⁻³)	1x10 ¹⁰	1x10 ¹⁰
	Temperature (eV)	0.2	0.2
	Drift velocity	0 m/s	-7500 m/s
	Simulation Method	KineticMB	DriftingMB

LEO SSO:	Parameter	Electron-1	lon-1 (H+)	Electron-2	lon-2 (O+)
	Density (m ⁻³)	1.1422E8	6.25E7	1.078E7	6.25E7
	Temperature (eV)	0.2	0.2	11000.0	0.2
	Drift velocity	0 m/s	-7500 m/s	0 m/s	-7500 m/s
	Simulation Method	KineticMB	PIC	KineticMB	PIC

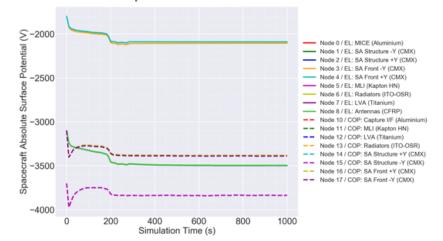
Methods

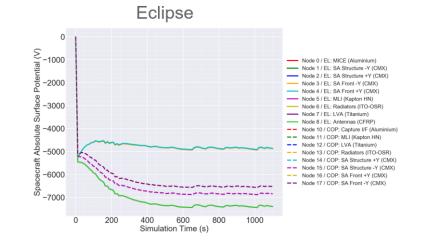

Task 1 methods



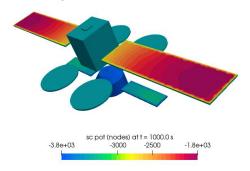
Task 2 Methods

- Spacecraft Close-up:
 - 90 cm \rightarrow 5 cm
 - velocity: 0,85 cm/s
- Self-consistent capacitance:
 - Computed dynamically and used in circuit
- Short-circuit at « contact »
 - 10 Ω resistor after contact \rightarrow discharge ~ns
- Simulation in 4 steps (GEO timings)
 - Time = $0s \rightarrow 2500s$, initial charging
 - Time = 2500s \rightarrow 2600s, close up
 - Time = 2600s discharge
 - Time = 2600s \rightarrow 3000s, relaxation




Task 1 Results

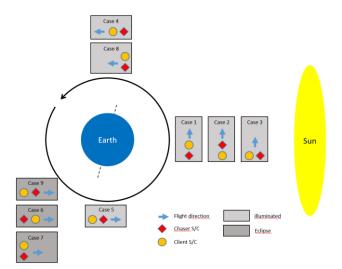
GEO: Servicing of ELECTRA S/C:

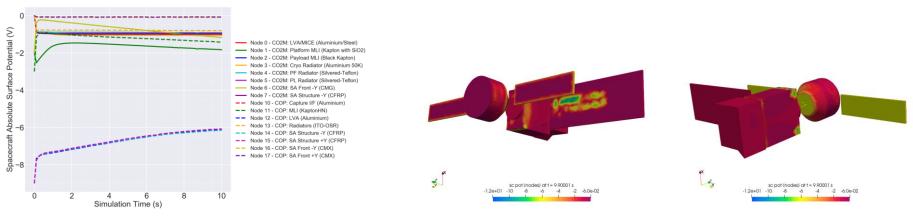

Case	S/C ground Servicer [V]	S/C ground client [V]	ΔV S/C grounds [V]
Equinox 00:00	-3836 V	-3496 V	340 V
Equinox 06:00	-3564 V	-3727 V	163 V
Winter Solstice 06:00	-3569 V	-3745 V	176 V
Eclipse	-6833 V	-7385 V	552 V
Equinox 12:00	-3313 V	-3435 V	122 V

Equinox 00:00

Equinox 00:00

2

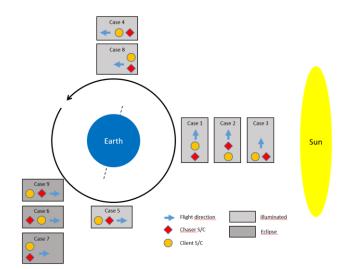

Results

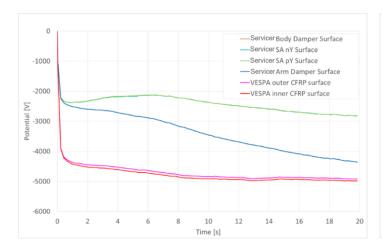

Task 1 Results

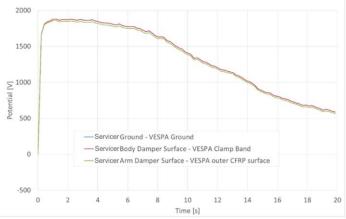
LEO ISS: Servicing of CO2M S/C:

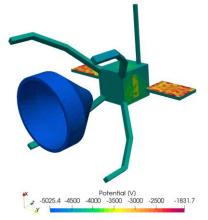
Case	S/C ground servicer [V]	S/C ground client [V]	ΔV S/C grounds [V]
ISS-1	-0.92	-0.71	-0.21
ISS-2	-0.9	-0.86	-0.04
ISS-3	-1.35	-0.8	-0.55
ISS-4	-0.86	-0.73	-0.13
ISS-5	-6.13	-1.06	-5.07
ISS-6	-0.89	-0.77	-0.12
ISS-7	-1.21	-0.82	-0.39
ISS-8	-0.65	-0.73	0.08

ISS-5

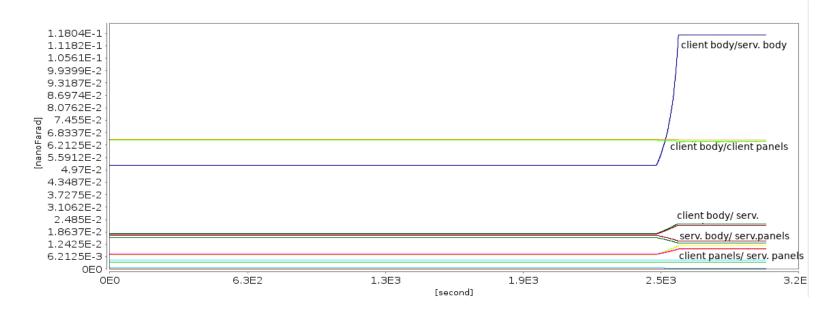

Slide 9




Task 1 Results


LEO SSO: Removal of VESPA Module:

Case	S/C ground servicer [V]	S/C ground client [V]	ΔV S/C grounds [V]
A-V-C1-SSO-E-6	-4356	-4940	1879
A-V-C1-SSO-E-7	-4686	-5461	1443
A-V-C1-SSO-E-9	-5034	-3924	-1110
A-V-C2-SSO-E-6	-4681	-5733	1804
A-V-C2-SSO-E-7	-4946	-5283	974
A-V-C2-SSO-E-9	-5446	-3649	-1823

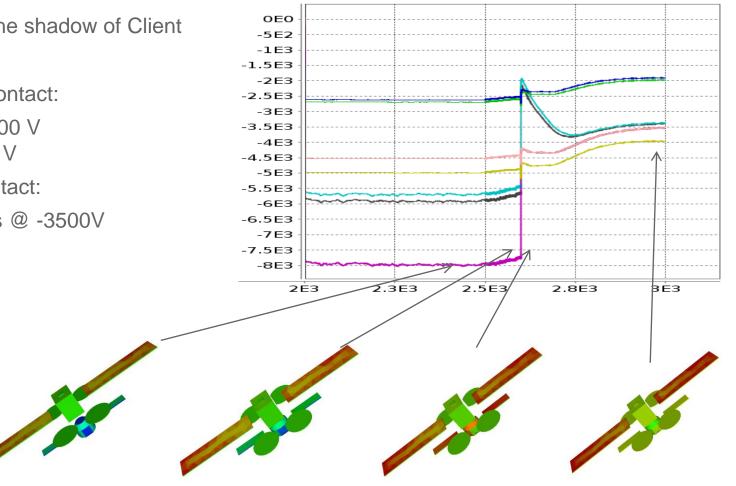

Charging and ESD risks during in-orbit rendezvous manoeuvres

Results

Task 2 Results

• Large Debye sheath: Capacitance evolves as 1/d:

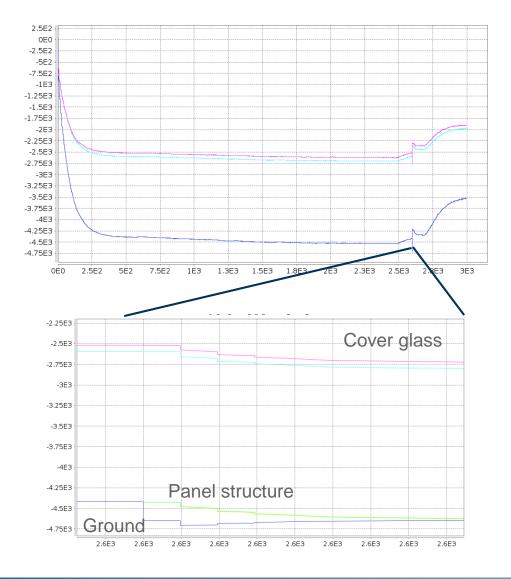
Task 2 Results


- GEO 1: Servicer in the shadow of Client
- Potential before contact:
 - Servicer: -8000 V
 - Client: -5000 V
- Potential after contact:

-1500 V

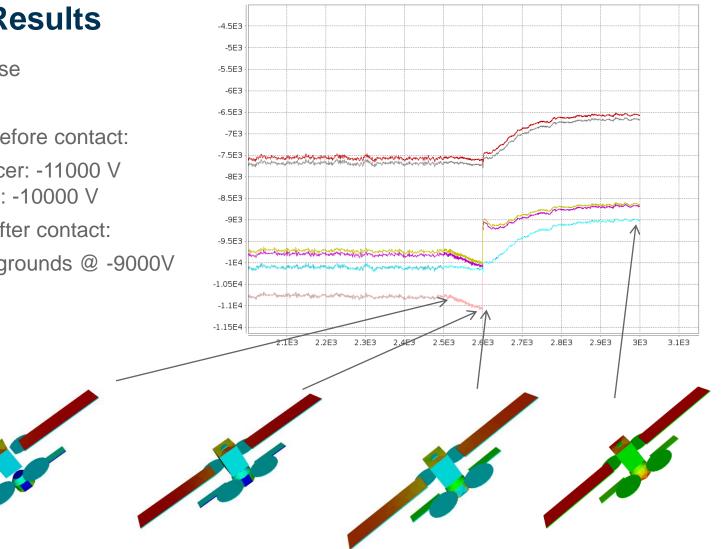
-4000 V

-8500 V


• Both grounds @ -3500V

Task 2 Results

- GEO 1: Servicer in the shadow of Client
- Potential evolution transient
 - Rear side of panels changes slower due to bleed resistance



Task 2 Results

GEO 4: Eclipse

- Potential before contact:
 - Servicer: -11000 V
 - Client: -10000 V
- Potential after contact:
 - Both grounds @ -9000V

Conclusion

- Charging simulations of 2 S/C provide operational suggestions for docking
 - Which configurations are beneficial
 - Which configurations are dangerous
- Dynamic docking simulations enable the simulation of the ESD-event.
- No ESD risk identified in LEO ISS environment
- In LEO SSO the auroral plasma depletion events can lead to severe potential differences between the S/C
 - Do not dock in eclipse in the auroral region
- In GEO, shadowing of one of the S/C or eclipse can lead to severe potential differences between the S/C
 - Do not dock, when 1 S/C is in shadow

Way Forward

- Evaluation of discharge in LEO configurations in Task 2
- Evaluation of the ESD-effects in Task 2
- Assessment of ESD mitigation techniques in Task 3
- Flow-down of results into our projects.

SPACE SYSTEMS

Charging and ESD risks during in-orbit rendezvous manoeuvres

We. Create. Space.