

Improved Material Modelling for Destructive Re-entry Assessments

James Beck, Ian Holbrough, Belstead Research Ltd; Jim Merrifield, Fluid Gravity Engineering Ltd; Erhard Kaschnitz, OGI; Martin Jackson, Yunus Azakli, University of Sheffield; Peter Doel, Berend Winter UCL; Paul Bingham, Jess Rigby, James Eales, Sheffield Hallam University Thorn Schleutker, Oliver Hohn, DLR, Benoit Bonvoisin, ESA Clean Space Industrial Days, 11-14th October 2022 PR00093/D31

Objectives

- Three Separate Areas of Interest
- Glass Modelling
 - Specific investigation of fused silica and Zerodur
 - Development of 'glass' model for destructive re-entry tools
- Ejecta Interaction
 - Does the impact of aluminium on hot titanium/steel surfaces enhance demise?
 - Splashes seen on recovered tanks
- Bipod Demisability and Design-for-Demise
 - Critical part of optical payloads
 - Often titanium or CFRP, so can provide casualty risk

Glass Materials

- How do Glass Materials Demise?
 - Glasses do not have melting point
 - Reduction in viscosity with increasing temperature
 - Different profiles for different glasses
 - Hypothesis: shear failure when hot
- Characterisation of Zerodur, Fused Silica
 - Basic properites (OGI)
 - Temperature-viscosity curve (SHU)
 - State-of-melt Testing (SHU)
- Testing of Materials
 - Confirm (or deny) shear failure
 - Consolidate modelling approach
- Construct/Verify Models
 - Data from testing

Belstead 🗇

CNES data on Zerodur

Glass Material Demise Modelling

- Glasses generally modelled as equivalent metals
 - DAS, DEBRISK known models

Property	DAS-Fibreglass	DAS-Zerodur	DEBRISK-Glass	DEBRISK-Zerodur
Density (kg/m ³)	1840	2530	3500	2530
Melt Temperature (K)	1200	1424	1473	1430
Specific Heat (J/kgK)	1047	842→1645	1000	N/A
Latent Heat (J/kg)	232	250000	250000	N/A
Emissivity	1	1	0.92	0.45 (thin)
-				0.85 (thick)

- Significant variation in models
- SAMj models matched from shear based models
 - Large latent heats required in order to capture data
 - More conservative than the other models

Property	SAMj-Fused Silica	SAMj-Zerodur
Density (kg/m ³)	2200	2530
Melt Temperature (K)	2600	1558
Specific Heat (J/kgK)	746→1300	746→1300
Latent Heat (J/kg)	1000000	4000000
Emissivity	0.8	0.8

Glass Material Demise Modelling

- Viscosity-shear Model
 - Based on understanding of hot outer layer
 - Material shear

Belstead *#*

- Zerodur test picture suggests this type of mechanism
- Different Behaviour for Different Glasses
 - Create exponential viscosity-temperature curve
 - Use HBI model for internal temperature gradient
 - Decide how much material can shear
 - Arbitrary selection of 1000Pa.s
 - Consider Rayleigh-Taylor instability
 - Fixed surface tension of 0.3N/m used
 - Gives mass loss timescale
 - Scale mass which can shear by timescale

The University Of

- Assume sheared mass does not re-solidify
- Only known 'non-equivalent' model

Glass Materials

- State-of-Melt Testing
 - Experiments performed
 - Zerodur exposed to high temperatures for different timescales
 - 600K 1750K for 20s-600s in fixed temperature furnace
 - Little observed for short timescales
 - Some crystallisation on quenching
 - Internal stresses cause cracking on quenching

6

Glass Materials

- State-of-Melt Testing
 - Longer term exposure
 - Ensures that temperature of interest reached
 - 1400K fully crystallised on quenching
 - 1750K appears glassy, high internal stresses
 - No bubbling observed
 - Possibly a low pressure effect
 - Cavitation?

- Further post-test analysis to be performed
 - Observe levels of phase separation, crystallisation and cracking
 - Microscopy, X-ray diffraction

Ejecta Reactions (FGE)

- Demise Assistance to High Temperature Materials
 - Molten aluminium splash on steel/titanium
 - Exothermic reactions possible
 - Literature suggests that thermite (metal-metal oxide) reactions are unlikely
 - Literature suggests that intermetallic reactions may need thinner structures
- Two Stages of Testing
 - Laboratory tests
 - Basic metallurgical reactions
 - Devise sensible wind tunnel tests
 - Wind tunnel testing
 - Can we see effect in representative conditions?
- Model Derivation
 - Realistic possibility is that this is not an effective demise mechanism

Ejecta Reactions

- Laboratory Testing (University of Sheffield)
 - Arcast melt spinner
 - Molten aluminium dropped
 - Heated titanium plate
 - Furnace designed to heat plates
 - Tests complete

Belstead 🛷

 No clear reactions observed RT 850 degC

Ti-6AI-4V

316L

The University Of Sheffield.

GI

PR00093/D31

9

Sheffield Hallam University

Bipods

- **Support Optical Payloads** ۲
 - And other things... •
- Often Low Demisability ۲
 - Titanium, CFRP, Invar •
 - Huge variety •
- **Test Nominal Bipod** ٠
 - 'Standard' design, titanium •
- Design 'Demisable' Bipod ٠
 - Lightweighting
 - 3D printing (flow paths?) •
 - Test and assess
- Modelling

coupling noints

actuator positions

Bipod Investigation

- Strawman Bipod Designed (UCL)
 - 22g
- Designed to Support 8kg
 - Design load 50 g
 - 3.5 kN per 3 frames
- Single solid A-frame
 - 1175 N (Y, out of plane)
 - 154 Mpa
 - 1761 N (X in plane)
 - 235 Mpa
 - Stiffness of the suspension
 - holding a rigid mass
 - Out of plane 495 Hz
 - In plane 412 Hz

Belstead #

• Sized for Wind Tunnel Test

Sheffield Hallam University

PR00093/D31

11

The University Of

争 🕯 UCL 👹

Wind Tunnel Testing (L2K, DLR)

- Campaign 1 Test Planning in Progress
 - Bipod designed
 - 3D printed
 - Thin structures of high interest fragmentation?
 - Glass sample design
 - Zerodur samples 50mm diameter / square
 - Stagnation and shear tests
 - Fused silica samples ordered
 - Rods to be tested (3mm, 6mm, 10mm)
 - Ejecta testing
 - Heat titanium plate close to melt
 - Place aluminium object in flow in front of plate

- Splash from molten aluminium on to plate
- See what happens!
- Testing is very soon...

Belstead #

PR00093/D31

12

Conclusions

- Three Key Areas of Investigation
- Glasses
 - Characterisation testing in progress
 - No bubbling of Zerodur at high temperature at atmospheric conditions
- Ejecta
 - No evidence of a real effect from literature or laboratory tests
 - To assess in wind tunnel
- Bipods
 - Thin structures are of interest for demisability (or fragmentation...)
 - How to design for demise?
- Much to learn from upcoming test campaign

