

Addressing DRACO mission phase A design challenges

Paolo Minacapilli^a, Flor Criado Zurita^a, Saúl Campo Pérez^a, Gabriele De Zaiacomo^a, Irene Pontijas^a, Biagio D'Andrea^a, Andrea Fabrizi^a, Andrea Pizzetti^a, Andrés Caparrós Quero^a, Beatriz Delmas^a, Angel Naranjo Valiente^a, Carlos Menor^a, Santiago Molina^a, Mercedes Pavía^a, Benjamin Bastida Virgili^b, Stijn Lemmens^b, Beatriz Jilete^b, Simone del Monte^c, Alesssandro Turchi^c, Bernd Helber^c, Amandine Denis^c, Jéromine Dumon^d, Martin Spel^d

(a) Elecnor Deimos, (b) European Space Agency, (c) von Karman Institute for Fluid Dynamics, (d) R.Tech

Contents

- DRACO (Destructive Re-entry Assessment Container Object) mission objectives
- System and mission concept
- Re-entry external observation campaign
- Sensors selection
- Spacecraft configuration
- Preliminary mission analysis
- Objects of Interest selection
- Summary of identified Phase A design challenges
- Mission way forward and conclusions

DRACO mission objectives

DRACO is intended to:

- 1) Validate space debris re-entry predictive models with in-flight data
- Demonstrate fundamental understanding of re-entry break up and ablation behaviours (in view of Design 4 Demise strategies)
- 3) Verify on-ground demise testing with actual in-flight data

To design a **representative LEO platform** to record in-situ the break-up sequence and ablation process during a destructive re-entry.

Instrumented by a device that collects data during the destructive re-entry and transmit them.

System concept

DRACO PLATFORM

Dry mass of at least 100 kg
Wet mass of maximum 200 kg
→ Representative of LEO satellites

- Sensors will measure temperatures, deformations, objects separation detection and qualitative imaging of the environment.
- Data **from sensors** collected by **DDCU** and transmitted to the **CAPSULE**.
- Objects of Interest (OoI) can be functional or non-functional. The structure demise will be studied too.
- The platform may be equipped with additional functional components.

Mission concept

Re-entry external observation campaign

Driving Parameter	1. Ground-based	2. Airborne-based	3. Sea-based	
Cost	+ Low operational costs	 High cost, can be reduced by sharing the flight (may cause schedule conflicts) 	 High cost, can be reduced by sharing the platform (may cause schedule conflicts) 	
46%	4	2	2	
Trajectory Observation Flexibility	 Constrained by ground infrastructure location (e.g., can be problematic to observe the SPOUA region) + Large aperture 	 Constrained by air traffic control and political borders Limited by maximum flight hours High flexibility in reaching the observation point of interest 	 Constrained by ship ports of call + Mid flexibility in reaching the observation point of interest 	
10%	3	4	2	
Data Quality 16%	 + Large aperture and long focal length optics ensure improved spatial resolution 	 Limited spatial resolution due to small window apertures (diffraction limit) Image degradation due to plane vibrations induced to instruments 	 Long focal length optics can be used improving spatial resolution Suffer the sea perturbations and ship- motor induced vibrations, a gyro-stabilized system is needed 	
	4	2	3	
Sky Visibility 28%	 Weather influences the visibility (clouds, moisture) Suffer atmospheric effects (long atmospheric paths) 	 + Can operate above cloud level, improving visibility 	 Weather influences the visibility (clouds, moisture) Suffer atmospheric effects (long atmospheric paths) 	
	3	5	3	
NORMALIZED RANKING VALUE	40%	33%	27%	

Criteria weights are computed using the Analytic Hierarchy Process

Sensors selection

Temperatures	ThermistorsThermocouples	 + very high accuracy - limited temperature range + good accuracy + extended temperature range + bigh TPL 	 EXCLUDED BASELINED
Deformations	Strain Gauges	 + High TKL + Micro-dimensions + Acceptable max temperature → may need TPS 	→ BASELINED
Objects separation	Joint contact switches	+ Micro-dimensions– Low max temperature	Further study needed
	However, some objects may separate before reaching that temperature A temperature A scenario representativeness P		
Qualitative imaging of the environment	IR cameras	+ Can measure high temperatures – Limited operational temperature (needs TPS)	Further study needed
Accelerations	Capsule IMU	6	13th October 2022

Spacecraft configuration

Capsule on top (with thermal protection) \rightarrow "easier" capsule release

Design challenges:

- DDCU and DDCU-capsule connection need thermal protection
- Temperature reached by wires outside the "box with TPS" and so the reached one at DDCU interface
- Cameras (and its harness) TPS

Cesa deimos von KARMAN INSTITUTE FOR FLUID DYNAMICS

Preliminary mission analysis

A de-orbit maneuver from a typical VEGA target orbit (SSO @ 500 km) with AVUM+ allows to target entry conditions in the range of interest for DRACO.

The **mission depends on the Launcher schedule** (e.g., VEGA-C or other micro-launchers).

31 opportunities identified, 7 opportunities selected as potential solutions for re-entry analysis:

- #3: short mission, 5.8 hrs after injection →
- #4: short mission, 7.5 hrs after injection
- #6: mid-short mission, 16.5 hrs after injection
- #15: mid-long mission, 43.3 hrs after injection
- #21: long mission, 63.8 hrs after injection
- #27: long mission, 80 hrs after injection
- #28: long mission, 86 hrs after injection

Objects of Interest selection

DRAMA and **PAMPERO** are adopted to study the demisability of DRACO and to support the selection and the accommodation of the Objects of Interest.

Available Mass for OoI: 40 kg

Available Volume: all the empty space of the three floors

Object	Criticality	Reason
Battery	LOW	Cells have steel can / large number of cells
Electronics Card	MEDIUM	High GFRP failure temperature
Fill & Drain Valve	HIGH	Titanium part
Gyroscope	HIGH	Titanium housing
Magnetorquer	LOW	Magnetic core (higher melting point than steel)
Propellant Tank	HIGH	Titanium material
Reaction Wheel Shaft	MEDIUM	Steel material; multiple objects
Reaction Wheel Flywheel	HIGH	Steel material; multiple objects
Solar Array	LOW	Low ballistic coefficient
Structural Bapole	LOW	Low ballistic coefficient
Structural Falleis		(demise in component based model)
Mirrors (Zerodur)	MEDIUM	Zerodur material
Mirrors (SiC)	HIGH	Ceramic material
Thrusters	MEDIUM	Inconel material
Optical payload fixings	HIGH	Invar / titanium materials
Solar Array Drive Mechanism	HIGH	Steel central shaft
Star Tracker	HIGH	Internal titanium parts
Lenses	HIGH	Silica material

Classification of space-debris critical components in terms of ground risk has been subject of several investigations in the literature.

This list constitutes the baseline for the Ool under consideration for DRACO

Objects

 functional or dummy according to the platform

conventional or demisable

J. Beck, I. Holbrough, J. Merrifield, M. Spel, J-M Papy, D. Briot, S. Bianchi, E. Minisci: Probabilistic assessment of spacecraft demise (PADRE): Final Report, Issue 1 (2020)

Objects of Interest selection

Criteria for the Ool selection:

Scientific return based on the number and variety of objects, their representativeness for small satellites, and the presence of D4D objects.

Costs score inversely proportional to the number of objects; it depends also on the market (choosing from European markets increase this number) and the choice to have multiple objects for the same item.

Compatibility of the OoIs with the sensors (also if the objects can be easily measured by the sensors) and positioning with respect to the cameras.

- Reaction wheels
- Magnetorquers
- SADMs & solar panels
- Star trackers
- \circ Batteries
- Mirrors
- Gyroscopes
- o Demisable joints and

inserts

Location of OoI is decided to ease their presence in the FOV of cameras and ensure its demise is properly monitored.

DRACO mission challenges

Only Medium and High Exposure ones here reported

Mission way forward and conclusions

Mission level

 Effect of LUS injection accuracy on the demisability behaviour, both attitude (e.g., tumbling) and positioning

System level

- Ool iterative selection and accommodation, including D4D components (e.g., joints, magnetorquers, tanks, RWs, SADM, etc.)
- Sensors distribution over Ool and structure, cameras placement and thermal protection
- Consolidation of internal structure material to exclude early termination of the scientific window
- Thermal protection system for DDCU and harness
- Capsule release mechanism design

Thank you for the attention!

Addressing DRACO mission phase A design challenges

Paolo Minacapilli^a, Flor Criado Zurita^a, Saúl Campo Pérez^a, Gabriele De Zaiacomo^a, Irene Pontijas^a, Biagio D'Andrea^a, Andrea Fabrizi^a, Andrea Pizzetti^a, Andrés Caparrós Quero^a, Beatriz Delmas^a, Angel Naranjo Valiente^a, Carlos Menor^a, Santiago Molina^a, Mercedes Pavía^a, Benjamin Bastida Virgili^b, Stijn Lemmens^b, Beatriz Jilete^b, Simone del Monte^c, Alesssandro Turchi^c, Bernd Helber^c, Amandine Denis^c, Jéromine Dumon^d, Martin Spel^d

(a) Elecnor Deimos, (b) European Space Agency, (c) von Karman Institute for Fluid Dynamics, (d) R.Tech

Clean Space Industry Days (CSID) ESA-ESTEC, Noordwijk, The Netherlands

10-13 October 2022

