

ESA Clean Space Industry Days – 10 to 13 October 2022

EPFL Cesa

eSpace EPFL Space Center

EXPERIMENTAL DEMSE STUDY OF NOVEL MATERIALS COMBINATIONS FOR SPACECRAFT STRUCTURAL PANEL ASSEMBLIES

AA Looten (EPFL), V. Michaud (EPFL), M. Richard (ClearSpace), A. Caiazzo (ESA)

Context

Uncontrolled reentry events

Multifactorial global risk

On-ground direct threat from planned or accidental uncontrolled reentering objects

Causes

- Rising numbers of satellited objects, +400% in QI of 2022 compared to 2019
- Incomplete and inaccurate demise models for composite materials
- The use of of critically resistant materials for external panel and/or joining systems leading to shading and late demise exposure

CFRP element remaining from Crew-1 capsule trunk reentry - Australia, July 2022

zherald.co.r

Ground impact probability is increasing everyday ! We need to act now to push for a <u>sustainable space safety</u>

Project Goal

D4D applied to S/C external sandwich panel

- ⇒ Hghest impact on demise depends on <u>material selection</u> and <u>exposure altitude</u> parameters, MTrisolini et al. 2018 [2].
- Our project focus on material substitution of external panel by optimal demisable composite design

Alexandre A. Looten

 \Rightarrow Improve <u>overall S/C demisability</u> by earlier demise/release of the external panels

Dual Approach

Novel composite design

Benchmark design = sandwich panel with through-thickness bolted joint insert system

Best Trade off between mechanical and demise performance

- $\circ~$ Hybrid carbon + flax in a ply-by-ply configuration with AlMg μ -powder filled epoxy
- \circ Short carbon fiber reinforced PEEK bolt

Alexandre A. Looten

Hybrid reinforced composite skin

+31% vs CRP

CF+FF ply-ply hybrid

Thermomechanical evaluation | EsaComp, Dynamic mechanical analysis - DMA

- OStiffness/mass ratio:+117% improvement vs AL-2024|+8% vs CRP
- \circ Specific Elastic modulus (E'/
 ho) :
- +45% vs AL-2024
- Demise evaluation | TGA, Static reentry chamber with creep loading, PWT
 - 1% wt AIMg matrix filler integration:
 - \rightarrow 10-45° C earlier degradation onset (390° C -> 355° C with epoxy)
 - ightarrow +10-50% degradation rate
 - $\circ~$ Mechanical failure during static reentry test @ 370°C ~ vs ~ ND failure for CFRP up to 850°C ~

Self-developed stat Divier Bry sine blog ding Ogel kip/m2 100kN U

Plasma Wind Tunnel testing

IRS PWK-4 wind plasma facility

OFRP

Heat flux – 520 kW/m² | Ambiant pressure 41 Pa

CF+FF ply-ply hybrid

CF+FF hybrid shows

- Hgh ablation rate
- Faster OF tow erosion
- Full ply spallation due to the flax layer

Short-CF/PEEK fasteners

Statle teentheaheetber test

- Thermomechanical evaluation | DMA tensile, shear testing
 - No significant differences in tensile and shear properties between continuous and short CF reinforcement
 - Specific tensile failure stress (σ_{UTS}/ρ) : +80% vs stainless steel
 - Specific shear failure stress (τ_{USS}/ρ) : +295% vs stainless steel

Demise behaviour evaluation | TGA, Static reentry chamber with creep loading

- Hgh heating rate induce higher failure temperature
- Higher strain at fracture with short fiber +30%
- Complete bolt separation with Short-CF design \Rightarrow Allowing panel release! 0

EPFL

What's next?

- Novel hybrid skin sandwich panel manufacturing
- Space qualification test (vibration, TVAC cycling)

- Composite fasteners Torque–Load evaluation
- Space qualification test (vibration, TVAC cycling)

- Increase novel assembly design TRL with PWT testing | highest environmental conditions relevancy
- Further development of an Experimental-to-Model correlation

Conclusion

- Promising composite demise improvement with a combination of carbon and natural fiber (flax) in addition with active metallic filler
- An optimal short-CF/PEEK fastener design has been identified by comparative evaluations and relevant testing approaches to replace current critical baselines
- Safe and sustainable uncontrolled re-entries can be achieve by selecting and applying efficient material selection and break-up sequence.

EPFL

Acknowledgments

This work is supported by EPFL and ESA through an NPI program #4000129740/20/NL/MH/hm

Thanks to:

LPACteam

Project partners James Beck Adam Pagan Belstead **IRS** Ralf Usigner & Alessando Netti beyond gravity Albert Vodermayer **Régis Voilat** Bcomp® ico pet Lionel Metrailler clearspace todav 10

Tank you for your attention !

Any questions?

Alexandre Looten

Ph.D. student at Swiss Federal Institute of Technology in Lausanne – EPFL.

Email: alexandre.looten@epfl.ch Phone: +41 21 693 48 36

Annexes

Alexandre A. Looten

EPFL

Demise testing

Thermogravimetry analysis TGA – Thermophysical

15 µg samples | 40°C/min heating rate | T sweep [30 ; 900]°C | Air or N2 atm | ASTM E131-20

- > Degradation onset temperature | Weight loss rate (T)
- Dynamic mechanical analysis DMA Thermomechanical

3point bending | 0.1% strain | 10°C/min heating rate | T sweep [-150 ; 350]°C | ASTM D4065-20

> Storage modulus (T) | Melting temperature onset

 <u>Self-designed static reentry chamber with creep load –</u> <u>Thermo-physico-mechanical</u>

2.9 kNcreep preload | Heat flux up to 100 kW/m2 | medium vacuum 10^5 mbar | 3 high acquisition thermocouples | HD camera

- > Full samples demise behaviour
- > Mechanical loosening onset (T, t)
- > Demise temperature onsets (t)

EPFL