

CONTAINMENT TECHNIQUES FOR RE-ENTRY EVENTS

OHB SYSTEM AG D4D-CONT TEAM, 12.10.2022

BASED ON: TM-2234-OHB_01

INTRODUCTION

Study Objective

- Identify and validate containment techniques that can be broadly applied in spacecraft critical elements designs to reduce the re-entry casualty area –

Study Overview

- Identify containment methods based on existing literature and OHB's experience with past missions.
 These methods will be both applied to platform and payload elements.
- The second and main part of this activity will be the validation of the selected containment methods:
 - utilising modelling on spacecraft level and in further detail
 - the design and testing of concepts
- In the final steps the results are then translated into an update of both modelling (DRAMA), processes (input to the next generation of DIVE) and databases (ESTIMATE).

OVERVIEW OF TEST CAMPAIGN

TEST CAMPAIGN OVERVIEW

Concept #	Concept 1	Concept 2	Concept 3	Concept 4	
Containment Concept	Spectrometer thermal guard	Optical mounts connected in optical bench	Feet / Bipods connected by tether	Electronic units in cage	
Description		Fil and ISF FEE electronics			
Test Sample	Upper Part (Shell 1) ID 1111 Titanium Boit Assembly ID 1130 Commit Boit Assembly ID 1130 Refractory Metal Boit Assembly ID 1140 Lower Part (Shell 2) ID 1112.1	Bench Dummy ID 2110 M4 Titanium Bolt ID 2142 M4 Titanium Bolt - countersunk ID 2141 Refractory Metal Bolt ID 2151 M8 Titanium Bolt - countersunk ID 2132 M8 Titanium Bolt - countersunk ID 2132 M8 Titanium Bolt - countersunk ID 2131 Feet Dummy - M8	Tether Ring B ID 3421 Sample Holder Flange Assembly ID 3430 Filter 6 sport State 1 State 1 Sample Holder Flange Assembly ID 3430 Filter 6 sport State 1 State 1 Sample Holder Flange Assembly ID 3430	Ceramic Cage 2 ID 4321 Calorimeter (Tungsten Cube) ID 4111 Backplate Ceramic Cage 1 ID 4221	
Sample Material	C/SiC (carbon fibre-reinforced SiC)		Aluminium oxide fibres / fabric		
Concept Design Aspects	Two shellsBolted joint	SiC: through-holeTitanium bolts	Braid, or a "tube" of fibres passing through hole in baseplate feet / bipods	Cage Structure made of Aluminium oxide fibres, fixated to thermal doubler, which interfaces between satellite panel and unit	

TEST CAMPAIGN – TEST FACILITY & INSTRUMENTATION

- Tests are conducted in DLR's L3K arc-heated wind tunnel
- Allows the use of relatively large samples, up to 100mm diameter, with "nominal" testing flux levels up to approximately 1.9MW/m²

- Test Sample Instrumentation
 - Type K thermocouples are used to monitor the temperatures experienced during testing
- Test Facility Instrumentation
 - Two pyrometers (Maurer, KTRD 1085 and QKTRD 1085) calibrated to a temperature range of 900-3000°C
 - Up to 3 HD cameras used in tandem with 2 IR-cameras (same spectral range as the Maurer pyrometers)
 - Both the IR-cameras observe the test samples from the side.

TEST SAMPLE DESCRIPTIONS AND TESTING

TEST SAMPLE DESCRIPTION

Concept 3: Tether Connecting Bipods / Feet (Test 3 – Test 6)

- Test Objectives:
 - gain a better understanding of the tether material behaviour during reentry
 - to investigate and assess the failure of different tether configurations
- Sample Materials:
 - Tethers are made of aluminium oxide fibres
- Sample Test Configurations
 - Basic Tether Test Sample (Test 3 & Test 4)
 - Tether Connection Test Sample (Test 5 & Test 6)
- Tether Configuration
 - Concentric Sleeves
 - Rope

Tether Sleeve Test Sample Concept

Tether Rope Test Sample Concept

	Test 3	Test 4
Tether 1	Sleeve OD 12 mm	Sleeve OD 12 mm
Tether 2	Sleeve OD 8 mm	Sleeve OD 8 mm
Tether 3	Rope OD 12 mm	Rope OD 12 mm

TEST SAMPLE DESCRIPTION

Concept 3: Basic Tether Test Sample (Test 3 & Test 4)

- Predictive Simulation Results
 - temperatures are given for the front of the tether
 - open question as to the effectiveness of the conduction in the tether
 - material model:
 - standard catalycity ceramic bolt, (silicon carbide catalycity)
 - emissivity 0.8.
 - for nominal heat flux condition, temperatures reached are high:
 - with minimal conduction, the thinner tethers will both reach the aluminium oxide melt temperature.
 - test time to equilibrium or tether failure is quite short
 - test 4 run at the lower flux condition:
 - will provide a good idea of the maximum temperature at which the tether can survive
 - no prediction of aluminium oxide melt is made, but there could still be failures of the tether

- TETHERS TEST #1 VIDEO

TEST SAMPLE DESCRIPTION

Concept 1: C-SiC Spectrometer Thermal Guard (Test 1)

- Test Objectives:
 - gain a better understanding of the material behaviour during re-entry
 - to investigated the bolts connection of the shells
 - to assess the failure of different bolt connections
 - to determine the most suitable bolt material to maintain the connection of the shells
- Sample Materials:
 - Shells are made of HB-Cesic[®] carbon reinforced silicon carbide
 - M8 bolt made of different materials:
 - Titanium
 - Aluminium Oxide
 - Molybdenum

Belstead

Sample Holder Assembly _____ ID 1150

TEST SAMPLE DESCRIPTION

Concept 1: C-SiC Spectrometer Thermal Guard (Test 1)

- Predictive Simulation Results
 - Melting of the titanium bolt is observed to occur very quickly, suggesting that a failure could be seen inside 30s.
 - Other bolts, and the silicon carbide thermal guard are expected to survive the test.
 - other interesting aspect is that the equilibrium occurs very quickly in the prediction - it is of interest to see whether this accurate

SAMj Predictions of the Temperature Data

- CESIC THERMAL GUARD VIDEO

Deutsches Zentrum DLR für Luft- und Raumfahrt German Aerospace Center

> Institute of Aerodynamics and Flow Technology

Supersonic and Hypersonic Technologies Department

WHAT HAPPENED?

T = approx. 4.2 sec

T = approx. 5.6 sec

Note: Times taken from beginning of HD video playback

TEST SAMPLE DESCRIPTION

Concept 2: Optical Bench & Mounting Solutions (Test 2)

- Test Objectives:
 - gain a better understanding of the material behaviour during re-entry
 - to investigated the bolt connections of the optical unit feet
 - assess the failure of different bolt connections
 - determine the most suitable bolt size and configuration for unit attachment
- Sample Materials:
 - Bench is made of HB-Cesic[®] carbon reinforced silicon carbide
 - Feet Dummy are made of Titanium
 - M8 and M4 bolt made of:
 - Aluminium Oxide (M4)
 - Titanium (M4 & M8)
 - Molybdenum (M8)

Feet Dummy - M4 ID 2122.1

TEST SAMPLE DESCRIPTION

Concept 2: Optical Bench & Mounting Solutions (Test 2)

- Predictive Simulation Results
 - simulation also run at a 50% nominal heat flux level to assess the potential impact:
 - prediction still shows a very fast failure of the exposed titanium bolts, but a molybdenum bolt would survive.
 - titanium blocks are shown not to reach melt, such that the failure of the bolts is the only driver of any disconnection
 - predictions are relevant to the exposed bolts only behaviour of the recessed bolts is not known
 - some risk in shifting to a lower heat flux condition, as recessed bolt failure may not be observed
 - on balance, the lower heat flux condition is preferred as there is a longer test time which will provide more useful data

SAMj Predictions of the Temperature Data at Half Flux

D4D CONTAINMENT TECHNIQUES – TEST READINESS REVIEW

- CESIC BOLTED CONNECTIONS VIDEO

DLR für Luft- und Raumfahrt German Aerospace Center

> Institute of Aerodynamics and Flow Technology

Supersonic and Hypersonic Technologies Department

TEST SAMPLE DESCRIPTION

Concept 4: Cage Containing Electronics Unit (Test 7 – Test 10)

Test Objectives:

- gain a better understanding of the cage material behaviour during re-entry
- to investigated and assess the failure of cage configurations
- to investigated and assess influence on the electronic units
- Sample Materials:
 - Cages are made of 99% aluminium oxide fibres (Cerafib 99) provided by Cerafib
 - Calorimeter is made of Tungsten
- Cage Configurations:
 - Test 7 reference test calorimeter w/o cage
 - Test 8 Cage 1 10 mm holes / 10 mm spacing
 - Test 9 Cage 2 5 mm holes / 5 mm spacing
 - Test 10 Cage 3 10 mm holes / 5 mm spacing

Cage 2

Cage 1 10mm holes / 10mm spacing

Cage 3 5mm holes / 5mm spacing

10mm holes / 5mm spacing

Concept 4: Cage Containing Electronics Unit (Test 7 – Test 10)

- Predictive Simulation Results
 - most difficult set of tests to assess, the predictions are highly approximate
 - cube retains a significant temperature difference front to back, due to the back face being allowed to radiate
 - cage equilibrium temperatures are within the range of the equilibrium assessment and higher than the low catalycity/high emissivity model
 - The low catalycity is of key interest for the use of ceramics in containment solutions, as this increases the survivability
 - Improved catalycity model target of the post-test analysis.

SAMj Predictions of the Temperature Data

- ALUMINIUM OXIDE CAGE #1 VIDEO

Institute of Aerodynamics and Flow Technology Supersonic and Hypersonic Technologies Department

19

- REFRACTORY AND CERAMIC BOLTS IN TUNGSTEN VIDEO

THANK YOU!

ANY QUESTIONS?

TEST CAMPAIGN – CHRONOLOGICAL ORDER

Test Day	Test Concept	Test Title	Heat Flux [MW/m ²]	Test ID
DAY 1	Concept 3.1	Basic Tether Test	1.9	Test 3
DAY 2	Concept 1.1	C-SIC Thermal Guard Test	1.9	Test 1
DAY 3	Concept 2.1	C-SiC Optical Bench Test	1.3	Test 2
DAY 3	Concept 4.4	Cage 3 Test	1.3	Test 10
DAY 4	Concept 4.1	Calorimeter Cube Control test	1.3	Test 7
DAY 4	Concept 4.2	Cage 1 Test	1.3	Test 8
DAY 5	Concept 3.2	Basic Tether Test	1.0	Test 4
DAY 6	Concept 4.3	Cage 2 Test	1.0	Test 9
DAY 7	Concept 3.3	Tungsten Calorimeter Cube with Mo and AlOx Bolts	1.0	Test 5
DAY 7	Concept 3.4	Tungsten Calorimeter Cube	1.5	Test 6