

REFLECTOR-BASED ATTITUDE DETECTION SYSTEM -SLR RESIDUAL SIMULATION TOOL

Sebastian Schneider¹, Michael Steindorfer¹, Franz Koidl¹, Peiyuan Wang¹, Clement Jonglez², Merlin Barschke², Tiago Soares³, Estefania Padilla⁴ 1) Space Research Institute, Austrian Academy of Sciences, 2) Technical University Berlin, 3) European Space Agency, Noordijk, 4) GMV GmbH for ESA

IWF.OEAW.AC.AT

INTRODUCTION AND AIM OF THE PROJECT

Aim: Ease removal of future LEO satellites Objective: Provide a tool to assess the positioning of backup-CCRs for optimal identification

End of lifetime: satellites can start to tumble

- Outgassing
- Solar radiation pressure
- Magnetic torque
- Collision
- •••

Requirement for future removal:

- Knowledge of position/orbit
- Knowledge of attitude

Image: Example of ClearSpace-1 ©ClearSpace-1, ESA, www.esa.int

Investigated possible solution:

Additional CCR on every face of the spacecraft could enable attitude determination from ground

Basic structure of the tool:

- 1. Read of the input file (JSON) Satellite, Rotation/CCR parameters, reference coordinate frame (RCF)
- Definition of pass time Start and stop of (realistic) pass ... Elevation > 0°
- 3. Download TLE for prediction
- 4. Read in station coordinates Sinex files from CDDIS
- 5. Coordinate transformations (TEME, ITRS, GCRS ...)
- 6. Lagrange interpolation (interval closable)
- 7. Read in CCR position, normal vector and FOV
- 8. Rotate CCR around fixed axis in RCF

SLR RESIDUAL SIMULATION TOOL

Note: Simulation tool creates observed-minuscalculated residuals

Image: Satellite Orbit ©NWS

VALIDATION OF THEORY

Requirement: Single CCRs on one S/C face shall be distinguishable

reflector

Image: TechnoSat retroreflector Array (RRA) Characteristics ©Technische Universität Berlin

Important:

Faces distinguished by CCR pattern --> single CCRs have to be visible

Example TechnoSat: Max. distance between CCR: ~140 cm Min. distance between CCR: ~30 cm

VALIDATION OF THE TOOL

<u>Jason 3 (JA308219):</u> Nadir pointing, JA308219, Single CCR on pyramid visible SLR residuals "orbit cleaned" in patches (baseline flat)

Image: Jason 3 POD pyramid © *https://ilrs.gsfc.nasa.gov/missi ons/satellite_missions*

Image: Artist's rendition of the deployed Jason-3 spacecraft $\ensuremath{\mathbb{C}CNES}$

6

VALIDATION OF TOOL: SLR MEASUREMENTS

Galileo Yaw Steering: Galileo 101, L0116319

- Orientation follows sun: Yaw steering reference frame
- Symmetry conditions: panel tilted
- CCRs align at equal ranges -> e.g. 12 rows
- Peak distance -> incidence angle can be calculated

Galileo IOV panel arrangement

Measured SLR residuals vs. Simulated residuals

CCR image: https://ilrs.gsfc.nasa.gov/missions/satellite_missions/

HOW TO IMPROVE FUTURE SATELLITE MISSIONS

Tumbling behavior more difficult to monitor if no CCRs or just pyramid is on satellite

• Combination of multiple techniques: Light curves, space debris laser ranging, satellite laser ranging

Graz data: space debris laser ranging (SL16 R/B)

How allow more stations collect attitude determination data?

- Placement of "backup" CCRs on side faces
- Select CCRs and design placement of CCRs for better detectability and attitude determination

FIRST EXAMPLE: NOTABLE FINDINGS

FIRST EXAMPLE: NOTABLE FINDINGS

Calculation of incidence angle:

- Angle in which laser beam "hits" the surface
- CCR positioning has to be known
- Calculation with central residual distance of intersection of two crossing CCR residuals

Calculation (simple trigonometry):

$$\alpha = \arcsin\left(\frac{r}{d}\right)$$

α ... incident angle
r ... central residual distance
d ... side length of the square
created by the CCRs (e.g.: 1 m)

Example with r1, r2 and r3: r = [0.30, 0.55, 0.43] mResults:

 $\alpha = [17.46, 33.37, 25.48] deg$

Note: max α would be the FOV of the CRR

ROTATION PERIOD VARIATION

Rotation period variation

- axis = [1,0,0] (same as before)
- T = 50 s, 100 s, 200 s, 400s
- Stretching pattern, influence on apparent period

Rotation period	Measured apparent period	Deviation in %
50 s	47 s	6 %
100 s	87 s	13 %
200 s	159 s	20.5 %
400 s	292 s	27 %

Conclusion: The higher the rotation period the higher the deviation

IWF.OEAW.AC.AT

DISTINGUISH SURFACES

Distinguishability of surfaces

- Case A: Easy if any number of CCRs can be chosen -> number of tracks in SLR residuals
- Case B: Equal number of CCRs can lead to similar pattern: A4 (purple), Nadir (cyan)

• With 1-4 CCR on ervery face two faces remains with same number of CRR

Problem: At least three corner cube reflectors per face, would facilitate a possible attitude reconstruction.

3-4 CRR PER FACE

Problems:

- Indication of rotation direction
- Assignment of residuals to faces

- A2 and A4 have a similar pattern as well as A1, A3 and B1
- Possible solution: Place two CCR close together

DISTINGUISHABILITY: EQUAL NUMBER OF CCRS

Distinguishability: patterns with equal number of CCRs

- Group e.g. two CCRs together (in the example distance 8.5 cm)
- Maximal residual distance: 6 cm (with FOV = 45 deg)

PAIR OF 2 CCR: CAN THEY ALWAYS BE DISTINGUISHED?

- Accuracy of SLR measurements between 0.3 cm and 1.0 cm
- \rightarrow Residual distance > than accuracy

- Answer: No it is not always possible
- But: It is only necessary once per revolution to assign the residual to a face
- Remember: Pair of CCRs are mounted a distance of 8.5 cm

ÖAW (İWF

PROBABILITY OF A PAIR TO BE DISTINCT

HOW MANY CCRS ARE NEEDED?

For a unique pattern at least 18 CCRs are needed Assuming:

- At least three CCRs per face
- One face with no CCRs

				•		
		•	#5			
*		ł			*	
	#2	ŧ	#4 4	# #3		
		*				
		*				
			#1			
		#(6			

Face	Single CCR	Pair of two CCRs	Total number of CCR per face
#1	4	0	4
#2	3	0	3
#3	0	2	4
#4	2	1	4
#5	1	1	3
#6	0	0	0
Total	10	4	18

OUTLOOK / SUMMARY

Summary / outlook

- Tool to simulate SLR residuals
- Modular setup, simple to iterate through different setups
- Verified with measured SLR residuals to different satellites

Potential applications

- Test various CCR setups in different rotation conditions
- Validate different attitude determination techniques on simulated data
- Data cleaning for outlier identification (leading edge, pattern recognition)

Acknowledgement

The work has been conducted within the framework of the ESA project "Reflector-based attitude detection system"

!!! THANK YOU !!!

CCR FIELD OF VIEW

CCR Field of view

• 40° / 50° / 60° -> overlap of residuals from different surfaces

