

PASSIVE DEORBIT TECHNOLOGIES – ENABLING A CLEAN SPACE BY MEANS OF AUTONOMOUS DEORBITTING CAPABILITY

Daniel Stelzl (HPS)

ESTEC | Clean Space Industry Days 2022

Content

- 1. HPS Group Short Overview
- 2. Deorbiting: Current Legal Situation
- 3. Launch and Space Objects Situation (LEO Orbits)
- 4. Active vs. Passive Deorbiting
- 5. Autonomous ADEO Deorbiting Dragsail Family

AUTONOMOUS DEORBIT SUBSYSTEMS


2. Deorbiting: Current Legal Situation

- IADC – Inter-Agency Space Debris Coordination Comitte – recommendations only!

E.g:

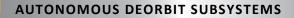
- "Support to the IADC Space Debris Mitigation Guidelines" 2019 Recommendation
- "Space Debris Mitigation Policy for Agency Projects" 2014 Policy
- "Stability of the Future LEO Environment" 2013 Recommendation
- European Code of Conduct
- France Net Zero Space Charter (Law!).....etc.

2. Deorbiting: Current Legal Situation

- IADC – Inter-Agency Space Debris Coordination Comitte – recommendations only!

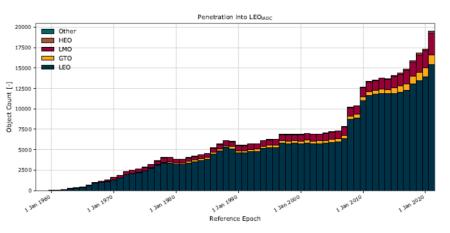
E.g:

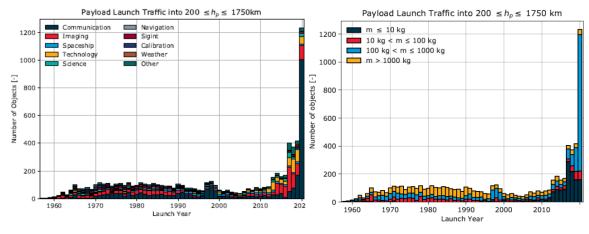
- "Support to the IADC Space Debris Mitigation Guidelines" 2019 Recommendation
- "Space Debris Mitigation Policy for Agency Projects" 2014 Policy
- "Stability of the Future LEO Environment" 2013 Recommendation
- European Code of Conduct
- France Space Operation Act (Law!).....etc.


SIMPLIFIED CONTENT:

Decommission all LEO satellites orbiting within 2000 km at the end of their operational live

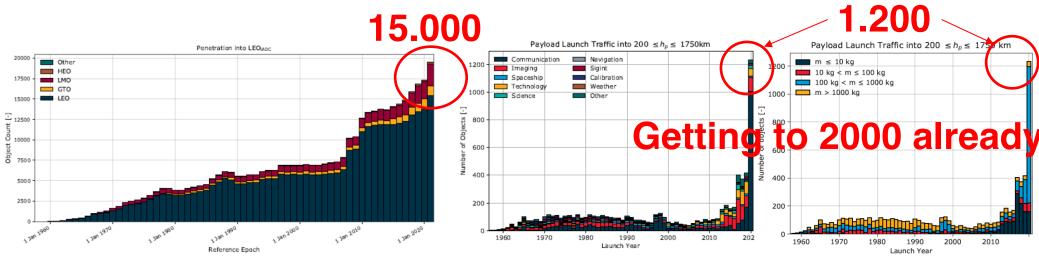
within 25 years


This is <u>NOT</u> binding and is <u>NOT</u> controlled!



25 year rule/recommendation was derived before the "NewSpace" and "Space Privatisation" age and does NOT reflect the current situation of launches and S/C in orbit

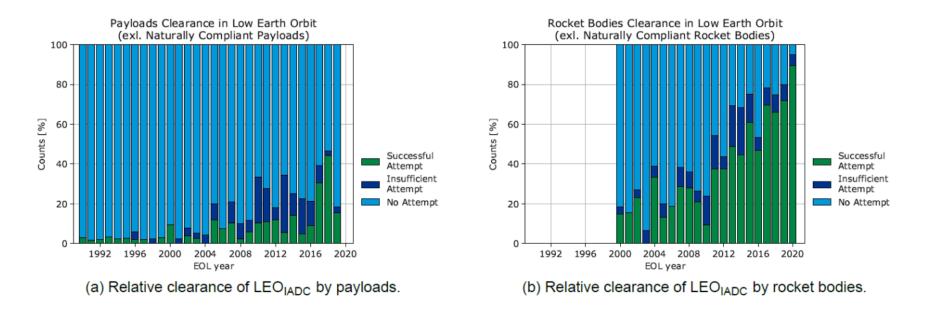
Evolution of absolute number of objects in LEO from 1960 till 2020 Source: ESA – Annual Space Environment Report 2021



Evolution of the launch traffic near LEO per mission type (left) and mass category (right) from 1960 till 2020 Source: ESA – Annual Space Environment Report 2021

11.10.2022 Page 6

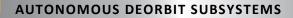
25 year rule/recommendation was derived before the "NewSpace" and "Space Privatisation" age and does not reflect the current situation of launches and S/Cc



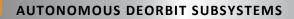
Evolution of absolute number of objects in LEO from 1960 till 2020 Source: ESA – Annual Space Environment Report 2021 Evolution of the launch traffic near LEO per mission type (left) and mass category (right) from 1960 till 2020 Source: ESA – Annual Space Environment Report 2021

.

3. Launch and Space Objects Situation (LEO Orbits)


- Deorbit Reliablity

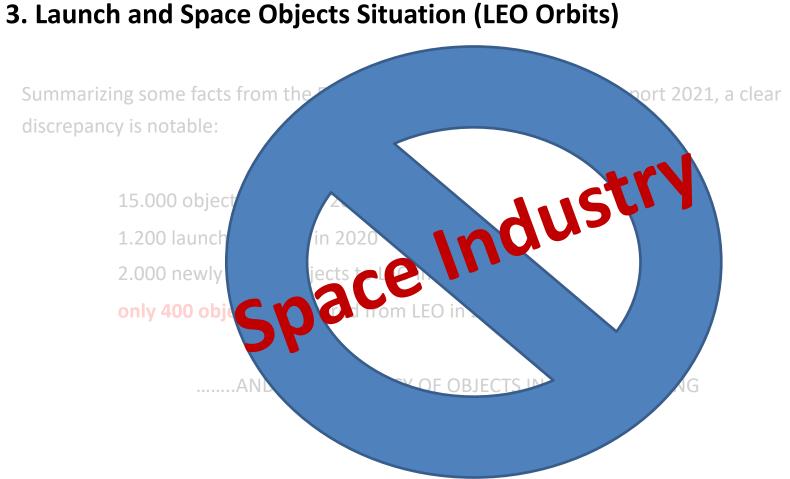
DEORBIT reliablity less than 50% !!



Summarizing some facts from the ESA – Annual Space Environment Report 2021, a clear discrepancy is notable:

15.000 objects in LEO in 20201.200 launches to LEO in 20202.000 newly added objects to LEO in 2020only 400 objects re-entered from LEO in 2020

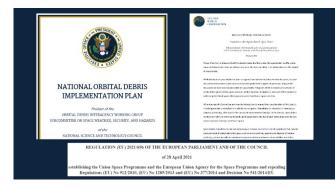
.....AND THE TENDENCY OF OBJECTS IN LOW EARTH ORBIT IS RAISING


Summarizing some facts from the ESA – Annual Space Environment Report 2021, a clear discrepancy is notable:

15.000 objects in LEO in 2020
1.200 launches to LEO in 2020
2.000 newly added objects to LEO in 2020
only 400 objects re-entered from LEO in 2020

.....AND THE TENDENCY OF OBJECTS IN ORBIT IS RAISING

COLLISION RISK INCREASED TREMENDOUSLY



2.1 Deorbiting: Current Legal Situation \rightarrow UPDATE 2022

UPCOMING

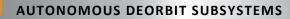
- FCC Adopts 5-Year Rule for Deorbiting Satellites
- European Commsion Space Traffic Management
- European Green Deal......
- ESA Zero Debris Approach

CONTENT:

Decommission all LEO S/C (satellites and rocket bodies) in the secured orbits (e.g. LEO) at the end of their

operational live

within


YEARS $\rightarrow \leq 5$ YEARS ?

with

DEORBIT RELIABLITY $\rightarrow \geq 90\%$?

11.10.2022 | Page 12

Clean Space Industry Days – 10.-13.10.2022 - ESTEC

ADEO DE-ORBIT SUBSYSTEM

4. Active vs. Passive Deorbiting

	ACTIVE DEORBITING	PASSIVE DEORBITING	
Disadvantages	Active S/C required → Failure prone	Un-controlled re-entry → Demiseable S/C?	
	Operational propulsion system required \rightarrow Failure prone	Short time increase of collision area → Decreased deorbiting time vs. Increased collision risk?	
	Operational expenses required	Tumbling attitude during descent	
	ADR – Active Debris Removal very expensive		
Advantages	Controlled re-entry possible	Prolonging missions due to autonomous capability → automatic deployment trigger possible	
	Collision avoidance manoeuvres possible	No active S/C necessary	
		Solution for S/C with no propulsion system e.g. CubeSats, Rocket Bodies	
		Low/No operational expenses	

AUTONOMOUS DEORBIT SUBSYSTEMS

4. Active vs. Passive Deorbiting

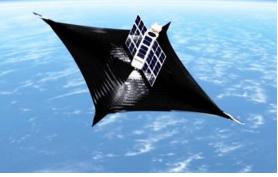
		PASSIVE DEORBITING	
	Active S/C required → Failure prone	Un-controlled re-entry → Demiseable S/C?	
Disadvantages	Operational propulsion system required \rightarrow Failure prone	Short time increase of collision area → Decreased deorbiting time vs. Increased collision risk?	
IF POSSIBLEs required		Tumbling attitude during descent	
I WOULD CHOOSE a PASSIV-			
		Prolonging missions due to autonomous capability → automatic	
Advantages	JOLOHION	deployment trigger possible	
	Collision avoidance manoeuvre possible	No active S/C necessary	
		Solution for S/C with no propulsion system e.g. CubeSats, Rocket Bodies	
		Low/No operational expenses	

ADEO - N (Nano for Cube- and Small-Satellite)

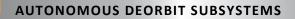
ADEO - M (Medium class: overlapping L- and N-class)

ADEO - L (Large for big satellites)

General Description:


- ultra-light weight (lower mass than additional propellant for active de-orbiting)
- scalable sail size (2 m² to > 100 m²) tailored to each spacecraft mass
- generic (standard interfaces with adjustable interface brackets to spacecraft)
- autonomous deployment possibility

	ADEO-N	ADEO-M	ADEO-L
Spacecraft Mass	1 – 250 kg	100 – 700 kg	500 – 1.500 kg
ADEO Mass	< 1 kg	5 – 10 kg	9-14 kg
ADEO Sail Size	2 – 7 m²	7 – 25 m²	25 – 100 m²
Dimensions	10 x 10 x 10 cm ³	20 x 20 x 20 cm ³	43 x 43 x 18 cm³
TRL	7 (9 very soon ☺)	3/4	6/7 soon ©


ADEO-N7 m²

ADEO-L >25 m²

Clean Space Industry Days – 10.-13.10.2022 - ESTEC

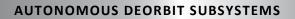
ACTIVITIES

> Flights:

- ADEO-N1 2018 on RocketLab Electron Kickstage
- ADEO-P 2019 Parabolic Flight Campaign
- ADEO-N2 2021 1st Flight on ION Dorbits Orbital Transport Vehicle (OTV) (ESA GSTP Co-funded)
- ADEO-N3 2023 2nd Flight on ION Dorbits Orbital Transport Vehicle (OTV)
- ADEO-L 2024 1st Flight on P200 Qinetiq (EC IOD/IOV Programm H2020)

› Projects:

- ADEO-1 2014-2018 ADEO-L Development
- ADEO-2 2018 to now ADEO-L Development


(ESA GSTP Co-funded)

(DLR & Bavaria Co-funded)

(DLR Co-funded)

(ESA GSTP Co-funded)

 AFO - 2022 - ADEO Follow On – Industrialisation and Commercialisation (ESA GSTP Co-funded)

POSSIBILITIES

- > Debris Monitoring:
 - Phase 0 Study with OHB

(ESA funded)

Thanks to the high modularity of the ADEO deployable mechanism and its internal electronics, different derivates could already been developed and implemented. By using ADEO active debris monitoring, debris avoidance and even debris removal of existing debris is possible.

CleanGreenSpace Missions

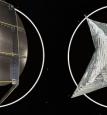
Deorbit dead satellites and expended launchers fast and reliably with our deployable dragsail:

More than 30,000 new on-orbit spacecraft endanger mission sustainability.

> ADEO products are suitable for satellites & launchers (1-700 kg) de-orbiting from LEO (< 800 km)

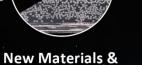
eesa

Thank you for your attention!




Thermal Hardware

Lightweight Structures


Reflector Antennas

Deployable De-orbit Sails Reflector/ Boom Subsystems

Engineering & Integration Services

w Materials & Processes

High Performance Space Structure Systems GmbH GERMANY

HPS S.R.L. Soseaua Pantelimon nr. 10-12 Bucuresti, sector 2 www.hps-srl.ro

