

Sustainable Space: an Earth Observation Programme perspective

2022 Clean Space Industry Days - 10th Oct. 2022

Toni Tolker-Nielsen H/ Projects Department (EOP-P) Earth Observation Programme Directorate (D/EOP)

ESA UNCLASSIFIED – For ESA Official Use Only

Envisat - 8 tones tumbling - ALERT, ALERT!

Failure on 8th April 2012

- Launch on 1st March 2002
- Twice its design lifetime

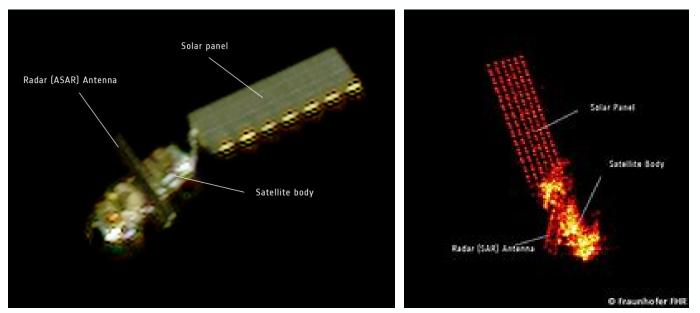
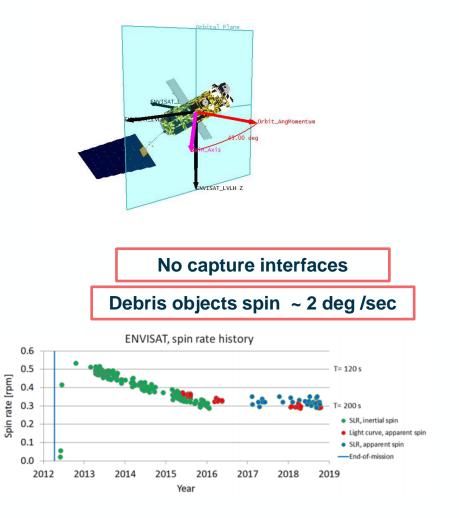
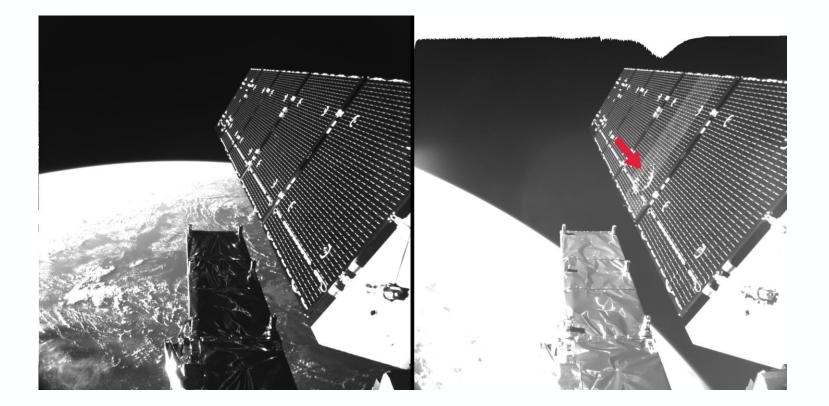
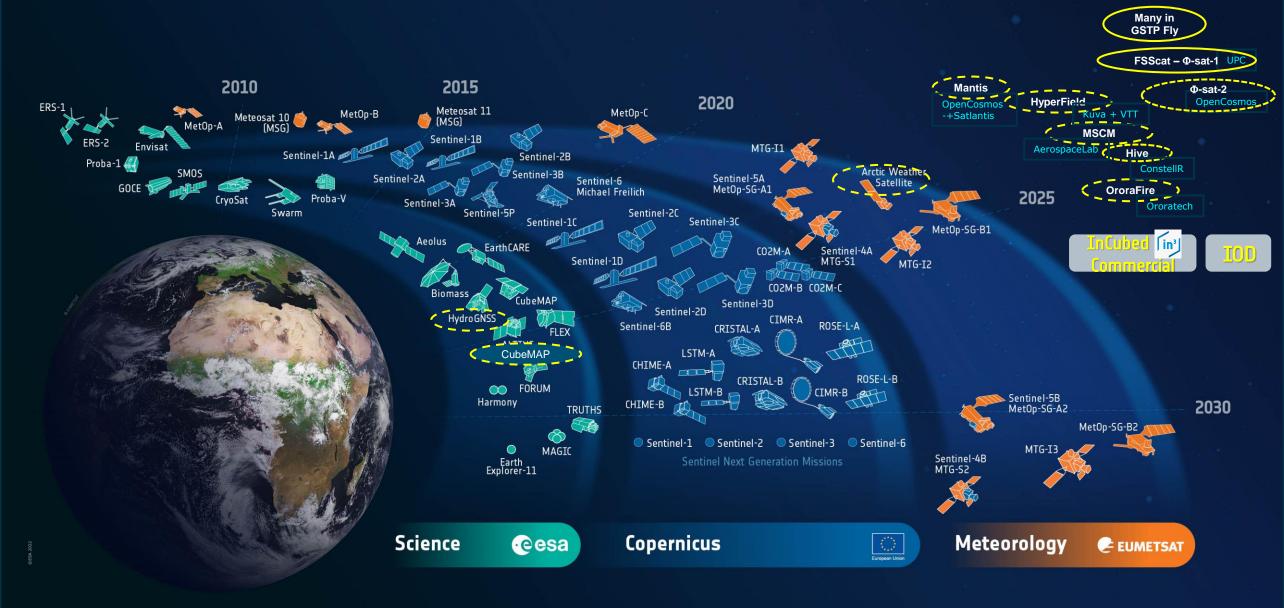



Image from Pleiades on 15th April 2012 (100 km away)


Sentinel-1a hit by debris (23-Aug-2016)

40 cm diameter – damaged by < 5 mm particle

- Small Power loss
- Minor orbit change / orientation


At least 8 trackable fragments generated (>5 cm)

Decadal Evolution in ESA Earth Observation

Preparing 21 + Developing 40 + Operational 14 + Heritage 6 = 81 Satellites (mostly in LEO)

EOP supports the four transversal pillars in the Zero Debris Approach

1. Evolution of ESA Policy

EOP will comply (lead by example)

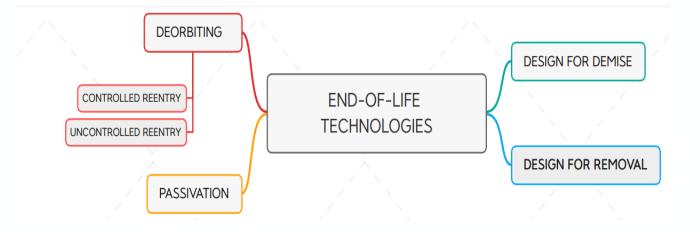
2. Upgrade platforms

EOP supports and will keep supporting: System & Innovative technology

3. Removal services

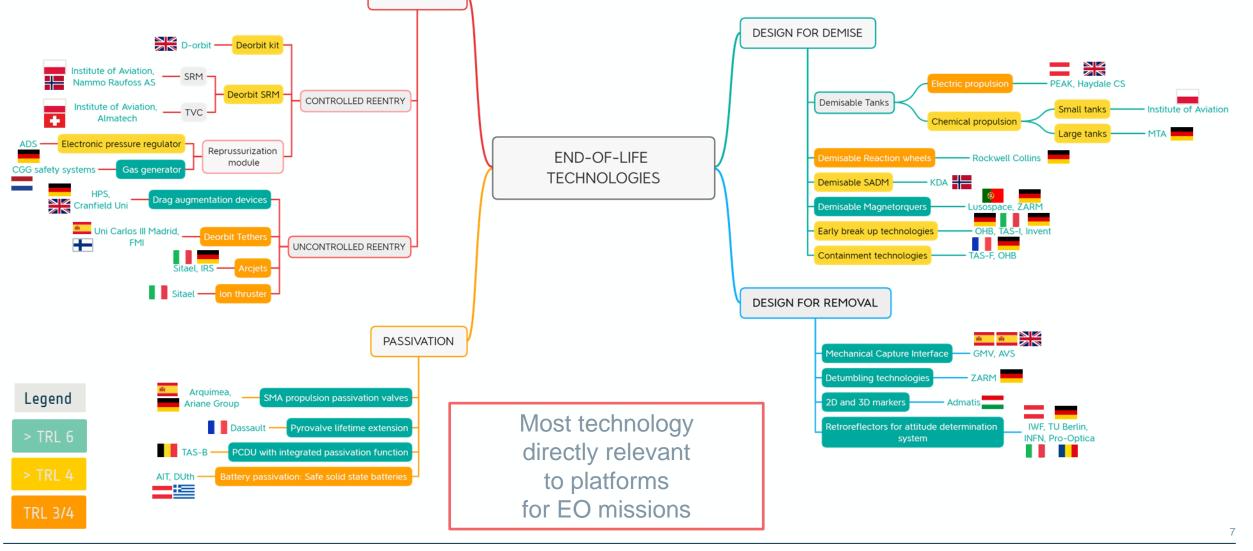
Copernicus Expansion already anticipating : standard I/F & retro Reflectors

4. Improving operations


EOP already collaborating with ESOC – Clean Space office

→ THE EUROPEAN SPACE AGENCY

What has been done until now (together with Clean Space Office)



6

What has been done until now (funded by FutureEO, TDE, GSTP, S2P) cesa

2. Upgrade platforms 3. Removal services 1 Contraction DEORBITING DESIGN FOR DEMISE

→ THE EUROPEAN SPACE AGENCY

*

Copernicus Expansion Missions (in Ph.B2)

Mission	Instrument	Orbit altitude Km	Reentry	
ROSE-L	OSE-L SAR		Uncontrolled	
CIMR	RF Radiometer (large antenna)	825	Controlled	
CRISTAL	Altimeter	750	Controlled	
СНІМЕ	Optical Hyperspectral	630	Controlled	
LSTM	Optical TIR	651	Controlled	
СО2М	Optical VNIR / SWIR	735	Controlled	

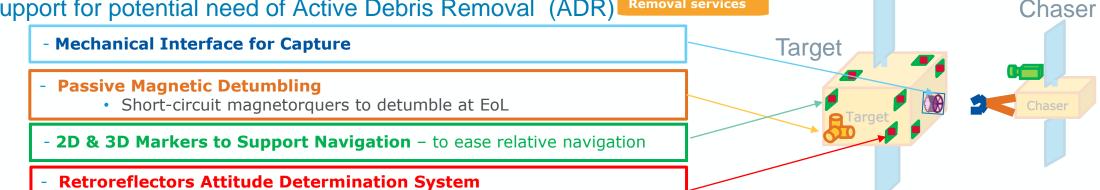
→ THE EUROPEAN SPACE AGENCY

*

+

8

What has been done until now in Earth Observation



Requirements (already in Ph.0) for all new EO mission

- ensure re-entry in less than 25 years : 2 options
 - removal from operational orbit
 - or **controlled** re-entry capability
- Passivation of all energy sources (also prevent re-activation)

Substantial progress made with Copernicus Expansion Missions:

- Life Cycle Analysis (LCA) introduced
- Passivation
- Initiated studies on demisable technologies
- **Removal services** Support for potential need of Active Debris Removal (ADR)

Upgrade platforms

enhance ground based attitude reconstruction

Future EO Missions (Phase 0/A/B1)

	Mission		Phase	Instrument	Orbit altitude Km	Re-entry	
Copernicus	S1	NG	B1	SAR	693		
	S2	NG	0	Optical	786	Not decided Uncontrolled / Controlled ?	
	S3 Optical	NG	0	Optical (2 Instruments)	815		
	S3 Topo	NG	А	Altimeter	750		
Research Missions	Harmony	EE-10	А	Bistatic SAR	693	Uncontrolled	
	CAIRT	EE-11 *	0	Optical	Range	Not decided Uncontrolled / Controlled ?	
	Nitrosat			Optical	between		
	Wivern			Radar	485 and		
	Seastar			SAR	817		
	NGGM	MoO	А	Gravity	397	Uncontrolled	
	CubeMAP	Scouts	B1	Optical	520	Uncontrolled	
	HydroGNSS		B2	GNSS-R	550	Uncontrolled	
Earth Watch	TRUTHS		B1-(Ext.)	Optical	600	Controlled	
	Artic Weather Sat.		C/D	MW Sounder	595	Uncontrolled	

→ THE EUROPEAN SPACE AGENCY

 \bullet

+

Future Missions

Continue support to technology developments using TDE, GSTP and FutureEO

- Specific to EO e.g. Demisable optical payload elements
- Not only EO: e.g. tanks, Reaction wheels (together with Clean Space Office)

Need to increase capability / flexibility for EO projects (different system size / scenarios)

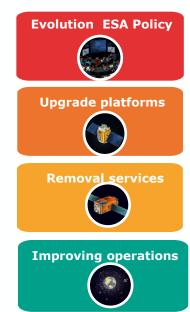
- Upgrade platform:
 - **Demisable** off-the-shelf units (RW, Tanks, MTQ) → key technology enablers for **un-controlled**
 - modularity to add controlled re-entry, as necessary
- Methods: Already in early mission phases → to include re-entry trade-offs of designs
 - "**"Ife mission extension**" & "**operations**" procedures needed for informed decisions
- Cost is a concern : for the use of new clean technologies / methods (not affecting mission performance)

What's next? Need for a Top-down view for prioritisation

→ New Sys studies in 2023 (under discussion with Clean Space Office and LSIs)

- Understand the implications of the ESA Policy Evolution
- Set up top-down methods / technology priorities
- Facilitate adoption in Industry product line (for ESA missions, and beyond)

💳 🔜 📲 🚍 💳 🛶 📲 🔚 📰 🔜 📲 🔚 📰 🛻 🚳 🛌 📲 🗮 🖿 👘


Take Aways

- EOP : committed to safeguard the Earth environment
 - EOP satellites monitor the Environment & support the application of environmental policies
 - EOP also aims at not generating more debris
 → Leading by example
- EOP satellites are already in danger: e.g. Sent-1 debris collision in 2016
 - EOP supports the evolution of the ESA Policy
 - Support to develop methods / cost effective technology
- EOP already a pioneer in Copernicus Expansion missions:
 - Initiated LCA \rightarrow to better understand the impact on the Earth Environment
 - Embedding some technologies to enable removal services
- EOP aims at going even further in future missions : in all 4 pillars of the Zero Debris Approach
 aiming at clean and competitive Industrial product lines

 for ESA missions (and beyond)

4 Pillars of Zero Debris Approach

