
MOST: MODELING OF SPACEWIRE TRAFFIC
SpaceWire test and verification, Short Paper

Brice Dellandrea
R&D Avionics Engineering

Thales Alenia Space
France

Brice.Dellandrea@thalesaleniaspace.com

David Jameux
On-Board Data Systems Division (TEC-ED)

European Space Agency
Netherlands

David.Jameux@esa.int

Abstract—MOST (Modeling of SpaceWire Traffic) is a
representative and powerful SpaceWire traffic simulator
designed to support conception, development and validation of
SpaceWire networks. Its recent improvements have targeted
simplification and performance enhancement while still being
used for sizing the SpaceWire networks of multiple TAS
missions. This presentation will focus on its current capabilities
and how they were employed on real use-cases then will present
the new improvements brought to MOST.

With the increasing complexity of SpaceWire networks
embedded on board satellites and the development of SpaceWire
standards and components, this simulator tool proves itself more
and more useful.

Index Terms—SpaceWire Networks, Simulation, OPNET,
MOST, Design, Traffic analysis, Performance assessment,
Failure injection, FDIR, Protocol testing

I. INTRODUCTION

MOST offers the possibility to build SpW network models,
selecting and configuring SpW components, simulating high-
level applications (FDIR for instance) and to test designs
without waiting for HW testing on Avionics benches:

• It allows keeping control on traffic load and identifying
weak parts of the network topology,

• It gives load margins and traffic performances (end-to-
end delays, buffers sizing),

• It simulates many SpaceWire failure cases and gives
the possibility to run various FDIR scenarios,

• It allows decreasing design risks and securing planning
thanks to early verification,

• It allows testing the impact of change of Node or
Switch behavior to help assessing the criticality of a
supplier’s non-compliance which can occur during any
satellite development phases.

In its current version, MOST is a SpaceWire library of
OPNET ® (Open NETwork modeler 17.5). This object-
oriented software allows SpW devices configuration thanks to
a set of attached attributes. Its graphical editor provides a full
set of possibilities to display and analyze simulation outputs.

Two versions of MOST currently exist: one early version
which has been intensively used by Thales Alenia Space to
make its internal simulations and including a wide SpaceWire

components library: MOST v1.4. Another version is currently
under development and brings many enhancements: MOST
v2.2. Both versions will be presented in this document with a
focus on the latter.

II. FROM MOST V1.4 TO MOST V2.2

MOST is the result of continuous developments efforts
performed since 2006: first as internal Thales Alenia Space
development, then with support of ESA to bring MOST to an
operable stage through SpaceWire library development,
validation with representative test cases (scientific mission and
robotic mission), and finally cross-validated with real
hardware.

The progressive stages of development of MOST v1.4
followed the protocol stack of the SpaceWire standards:
Physical level, Character level, Packet/Network level then User
layer for SpW (PID, RMAP, PTP,…) and was internally
developed accordingly as depicted in the following figure:

This brings a highly modular structure managed through

finite-state automates which was very convenient during the
initial SpaceWire CODEC development phase at the cost of
additional OPNET processing time for automates processing.
This first development generated MOST v1.4 which was
delivered to ESA by end of 2011 and was used, for instance, by
ESA to analyze the Bepi-Colombo SpaceWire-based payload
Command & Control network and by TAS for the MTG
SpaceWire network along with other TAS missions.

MOST v1.4 includes components developed according to
some specific SpW component datasheets: the SpW-10X
switch with GAR mechanism and round robin for priority
management, the SMCS116SpW, the SMCS332SpW, the
RTC. This MOST library has also been enriched with generic
nodes fully representative of the SpW standard and including
protocols building blocks such as RMAP, STUP and CPTP.

In parallel to the TAS simulation activities and continuous
MOST v1.4 improvements with the addition of many FDIR
functionalities (including dynamic reconfiguration of switching
table through RMAP messages), ESA started the development
of an experimental branch of MOST (v2.1). This development
aimed at improving the usability of the tool by merging the
physical, character and packet/network layers in a single SpW
CODEC layer and at allowing the construction of protocol
stacks as depicted in the following figure:

This new architecture had the advantage of providing a
clearer view on the atomicity of the SpaceWire elements: one
SpaceWire CODEC including the Physical, Character and
Packet/Network levels developed in C-code instead of
automates, then PID, RMAP or CPTP elements connected
together through OPNET Modeler® exchange links. MOST
v2.2 currently under development by TAS took as input this
new architecture with the aim to, keep the advantages of the
ESA solution while adding all features from MOST v1.4.

III. MOST V2.2 DESCRIPTION

MOST v2.2 targets a release to the SpaceWire community
in 2013. In that respect, the library has to be robust and easy
enough to be used not only by its developers. This has been at
the heart of the development undergone since end of 2012.

First of all, this new MOST library includes some new
highly generic components to allow designing networks with
very generic behaviors. Each of these generic components is
made of multiple building blocks and shares a common
building block with all the others: the SpW CODEC which
fully complies with the ECSS-E-ST-50-12C SpaceWire. This
CODEC building block can be tuned by the MOST user
changing a set of parameters available in the OPNET
Modeler® user interface:

• Link Enabled to enable/disable a port,
• Autostart is used to enter in Ready mode, node does

not send Null characters but waits for Null characters
to switch to Started mode,

• Link Start is used to enter in Started mode (sends Null
characters). This attributes should be set to disabled if
Autostart is set to enabled but MOST accepts both,

• TX Data Rate: this value corresponds to the physical
transmission rate of the SpaceWire link,

• RX Buffer Size, this value represents the size of the
CODEC reception buffer used to send the right number
of FCT,

• Show NULL Messages allows to display NULL
messages on SpaceWire link,

• Timer Disconnect is the time at which the CODEC
disconnects its SpaceWire link (FDIR),

• Timer Parity Error is the time at which the CODEC
simulates a parity error on the next characater received.
This Error causes a Disconnect of the SpaceWire link
(FDIR),

• Delay For Disconnection After Parity Error is the time
between the detection of a Parity Error and the
disconnection of the SpaceWire link (FDIR),

• Debug Level with 4 different values corresponding to
the level of details on the internal CODEC behavior to
print in the Console

Four components are currently implemented in MOST
v2.2: a Native Node, a Generic CPTP & RMAP Node, a
Generic Switch and a comprehensive simulation of the 10X
router with GAR mechanism, round robin for priority
management, and the implementation of its RMAP manager
for component dynamic tuning (switching table, port
enabling/disabling, link speed selection, etc…).

The Native Node is a very simple component,
implementing a SpW CODEC and a generic User Application.

The User Application of the Native Node manages the
SpW CODEC as a packet handling level which can be seen as
a higher level from the ECSS-E-ST-50-12C point of view. It
handles the TICK_IN & TICK_OUT interfaces and the
exchange of bytes with the CODEC. It provides packet
management: packet generation and packet reception. To
support this feature, it implements an input buffer to assemble
the bytes received from the CODEC before using it, and an
output buffer to send byte per byte their content to the CODEC.
It is configurable through the following parameters:

• Timecode Master (Enabled/Disabled) defines if the
Node can issue Time-Codes,

• Timecode Interarrival Time is the period of Time-
Codes emission,

• Time Code Start / Stop Time is a time defining when
the Time-Code service is enabled (respectively
beginning and end),

• Debug Level with 4 different values corresponding to
the level of details on the internal Native Node User
Application behavior to print in the Console,

• Packet Type is an integer between 0 and 98, this
parameter allows to identify the packets sent by the
Node so that OPNET can compute its specific End-To-
End Delay,

• Cargo Size is the size of the packets sent by the
application to the CODEC,

• SpW Packet Interarrival Time is a waiting time
between each packet sent by the Node,

• SpW Destination Address defined the destination of
the packet. MOST accepts logical and physical
addressing,

• Packet Generator Start / Stop Time is a time defining
when the Packet generation service is enabled
(respectively beginning and end),

• SpW Packet Deadline is the maximum time a packet
can take to cross the network from its source to
destination. The destination Node computes the real
end-to-end delay and in case it is higher than the
specified value, generates an error in the OPNET
console.

The figure here-below provides an overview of the Native
Node MOST architecture with a Register for Time-Count
storage:

As it can be seen, the Generic CPTP & RMAP Node is
more complex; it includes the implementation of PID protocol
(ECSS-E-ST-50-51C), RMAP (ECSS-E-ST-50-52C), CPTP
(ECSS-E-ST-50-53C) and a generic User Application on-top of
each of the CPTP and RMAP protocol layers:

The Network/Data Layers Interface is a layer introduced
for direct management of the SpW CODEC interfaces
including time-codes handling and exchange of bytes with the
upper-layers, it also performs the PID check on the received
packets to route the packet to the relevant upper-layer protocol
between RMAP and CPTP. To do so, this layer implements on
the top-down direction an output buffer to assemble the packets

from the data received from the CPTP and the RMAP blocks
before sending their bytes one by one with a FIFO process and,
on the bottom-up direction, transfers the bytes from the
CODEC to one of the protocol layers depending on the PID
information. CPTP and RMAP modules implement the
protocol part of each standard: packet formatting according to
each protocols. Their respective User Applications implement
a reception buffer and manage the actions related to the packet
content analysis.

For the Native Node as well as for the Generic CPTP &
RMAP Node, the embedded User Application basically
perform packet sending and consumption whatever their actual
content. The RMAP User Application is more advanced; it
allows sending a request which is pre-configured by the MOST
user (allowing for instance to configure a switch configuration
table). The format of this request is checked at receiver level to
determine its effect (for example: READ, READ-WRITE,
READ-MODIFY-WRITE), or simply discard in case of invalid
request.

The Generic CPTP & RMAP node can be configured
through a similar set of parameters than the Native Node with
some additional features:

• Network/Data Layers Interface specificities:
• NDLI Emission Buffer Size is the size of the

packet emission buffer,
• NDLI Local address is the logical address of a

Node, this value shall be comprised between 32
and 254. It is optionally used to check the received
packets address and discard invalid packets,

• NDLI Local address Check, this value
enables/disables the address check,

• CPTP & CPTP User Layers specificities:
• CPTP packet EEP Status allows to end a packet

with EEP (value = 1), by default all packets are
ended with EOP,

• CPTP Elephant Message Size: this parameter
defined the size of an elephant packet,

• CPTP Elephant Message Destination Address,
• CPTP Elephant Message Start Time is a time

defining when the elephant message is sent,
• CPTP Reception Buffer Size: this size shall be

greater than the biggest packet received,
• CPTP Service Rate sets the rate at which packets

are destroyed by the application
• RMAP & RMAP User Layers specificities:

• RMAP Command Value is the content of a RMAP
command to be transmitted,

• RMAP Service Rate sets the rate at which packets
are destroyed by the RMAP application,

• RMAP Key is the value of local key for compare
with RMAP request,

• RMAP Reception Buffer Size: this size shall be
greater than the biggest packet received,

• RMAP Reply Delay is the delay between the
reception of a request and the creation of its reply,

• RMAP Local Address is the local address used to
send a reply and shall be set between 32 and 254,

• RMAP Reply Packet Type is the packet type use
for reply packet, this value shall be an integer
between 0 and 98

The Generic Switch is a 32-port (31 external ports, plus 1
connected to a configuration port) Switch configurable either in
Static Mode (no reconfiguration on the initial table) or in
Dynamic Mode (taking into account RMAP messages to
change the routing table). It is able to perform Group
Adaptative Routing and message priority management.

As it can be seen on this figure, the Generic Switch
includes 31 SpW CODEC connected through a switching

matrix that implements the SpW Network level. This matrix
can switch packets from a port to another including
configuration packets to be handled by a local RMAP User
able to receive and interpret the requests and to reconfigure the
matrix dynamically.

The routing switch building blocks can be configured
through the following additional set of parameters:

• Watchdog Timer (Enabled/Disabled): protects the
network of elephant messages. If the time taken to
transmit a message is higher than the timeout value, the
packet will be destroyed automatically in the switch

• Timeout of watchdog timer,
• Switching Table to configure the Switch (including

header deletion capability, priority and one or more
output ports per logical address for GAR).

Apart from the RMAP reconfiguration requests, the RMAP
& CPTP User Applications implement currently very generic
behaviors based on data generation (with selection of size,
address, periodicity, emission buffer sizing) and data
consumption (reception buffer sizing, application service rate).
These basic settings can be refined through the use of
parameter files (“gdf” files) which allows configuring for
instance a non-periodic data generation sequence or a packets
sequence of different lengths, with different destination
addresses, ended with EEP/EOP, etc... However, no special
action is taken pending on the packet content. This kind of
behavior is related to upper-level application (PUS for
instance) and is currently not implemented in MOST v2.2.
However, a MOST user can implement such functions in C-
code in the RMAP User or CPTP User applications. This has
already been done successfully by TAS in the frame of
multiple simulations.

IV. SOME OF THE MOST V2.2 FEATURES

MOST v2.2 aims at providing full visibility on SpaceWire
networks behaviour and provides many ways to configure
them. Addressing can be either physical or logical, priority can
be provided as per ECSS-E-ST-50-12C standard as well as
header deletion. Address check can be performed optionaly at
receiver level. Moreover GAR and dynamically configurable
switching tables are implemented in the Generic 32-port
switch.

MOST v2.2 allows configuring the links data rates; the
CODECs reception buffer sizes, the packet emission and
reception buffers. This has proved very useful to test the effect
of SpaceWire network congestions over applications and the
possible loss of packets due to emission buffers saturation. As
the application does not necessarily consumes incoming
packets at the speed of its underlying SpW CODEC, a service
rate has been put in place to simulate the actual data
consumption capability and provide better representativity for
network sizing. For instance a Payload Data Hanling Unit
receiving science packets from a high speed SpaceWire
network and sending it over a lower speed Radio-Frequency
Unit or Mass Memory with an intermediate buffering might
block the network in case of reception buffer saturation.

Initialisation of the SpaceWire network is also taken into
account with the simulation of exchange of Null messages, and
implementation of LinkStart, AutoStart and LinkEnable flags,
triggering the corresponding intialisation sequence with the
final sending of the Flow Control Tokens:

FCT are implemented and exchanged according to the
received data characters flow. We can see here-below that on
the sending direction of the link, a small packet is emitted with
data characters and an EOP (the “small” ending character),
while on the reception direction of the link, a FCT is emitted
after 8 data characters have been sent:

NULL characters are also taken into account, providing
realistic time-code propagation jitters and time spacing
between symbols. These NULL characters can either been
showed or masked in the simulation with the drawback to
lengthen the simulation time and results processing as the links
appears very busy (constant oscillations on the link). Their
effect is anyway taken into account to compute the sending
time of the emitted characters so masking them does not impair
the representativity of the simulation.

Wormhole routing and the corresponding switching ports
blocking until end of packet transmission is an important
aspect of SpaceWire and can be analysed in details using
MOST:

We can see on the previous figure the effect of congestion
on three nodes willing to send packets to a single “Receiver”:
some data characters are stored in the input buffers of the
routing switch then, when saturated, the communication is
blocked until the emission port is free.

FDIR is a major feature for avionics and data handling
engineers. In that respect, many events can be triggered in

MOST, from parity bit error to EEP insertion, elephant packet
generation, or spontaneous disconnections.

At last, MOST v2.2 has a clear implementation of the
SpaceWire protocol stack, providing high flexility to the design
of SpaceWire networks through the delivery of generic nodes
and switches including basic applications with possible
insertion of user-made C-code in identified areas of the generic
User Application code for more advance behavior
implementation (PUS or instrument HKTM packets generation
pending on the reception of a special TC).

It is also possible to design user-made SpaceWire
components through the development of specific assemblies
(for instance a single User Application with multiple
underlying CODECs) through modifications of the generic
components using the OPNET interface (for more advanced
users). This is optimized through the possible re-use of the
already developed building blocks and has been performed by
TAS in multiple occasions (for Virtual Channel Multiplexing
machines, simulation of Masss Memory behaviors, SpaceWire
couplers with different buffering schemes, etc...).

This library is scheduled to be enriched in the future with
other specific components existing on the market, for instance
the RTC, SMCS116SpW and SMCS332SpW as it was the case
in the former MOST v1.4 version. Other implementations
could be foreseen on a case-cy-case basis.

V. CONCLUSION

MOST aims at enriching OPNET Modeler® with an
operational SpaceWire library available to the SpaceWire
community. The recent development performed in the frame of
an ESA contract extension brings MOST a major step closer to
this objective. Simplification and modularity enhancement to
facilitate the design of networks and new protocols are the key
features driving the current developments.

ESA own the MOST IPR and intend to release MOST 2.2
to the SpaceWire community in 2013. Some maintenance and
further developments of MOST 2.2 and improvements will be
performed for ESA by Thales Alenia Space until October
2014.

VI. REFERENCES

[1] “SpaceWire – Links, Nodes, Routers and Networks”,
ECSS-E-ST-50-12C, 31st July 2008

[2] “SpaceWire protocol identification”,
ECSS-E-ST-50-51C, 5th February 2010

[3] “SpaceWire – Remote memory access protocol”,
ECSS-E-ST-50-52C, 5th February 2010

[4] “SpaceWire – CCSDS packet transfer protocol”,
ECSS-E-ST-50-53C, 5th February 2010

[5] ISC 2010 – “Simulation of SpaceWire Network” –
Thales Alenia Space - France

[6] “Modeling of SpaceWire Traffic” DASIA 2011 & 2012 –
Thales Alenia Space - France

[7] “MOST User Manual” 100435074I, 8th March 2013 –
Thales Alenia Space - France

