MOST: MODELING OF SPACEWIRE TRAFFIC

SpaceWire test and verification, Short Paper

Brice Dellandrea

R&D Avionics Engineering
Thales Alenia Space
France
Brice.Dellandrea@thalesaleniaspace.com

Abstract—MOST (Modeling of SpaceWire Traffic) is a
representative and powerful SpaceWire traffic simuator
designed to support conception, development and vdation of
SpaceWire networks. Its recent improvements have tgeted
simplification and performance enhancement while @t being
used for sizing the SpaceWire networks of multipleTAS
missions. This presentation will focus on its curnet capabilities
and how they were employed on real use-cases theiil yresent
the new improvements brought to MOST.

With the increasing complexity of SpaceWire network
embedded on board satellites and the development 8paceWire
standards and components, this simulator tool proweitself more
and more useful.

Index Terms—SpaceWire Networks, Simulation, OPNET,
MOST, Design, Traffic analysis, Performance assessnten
Failure injection, FDIR, Protocol testing

[. INTRODUCTION

MOST offers the possibility to build SpW network dats,
selecting and configuring SpW components, simuatiigh-
level applications (FDIR for instance) and to tel&signs
without waiting for HW testing on Avionics benches:

« It allows keeping control on traffic load and idiénhg

weak parts of the network topology,

« It gives load margins and traffic performances ¢end

end delays, buffers sizing),

e It simulates many SpaceWire failure cases and gives

the possibility to run various FDIR scenarios,

e It allows decreasing design risks and securingrpten
thanks to early verification,

e It allows testing the impact of change of Node or
Switch behavior to help assessing the criticalityao
supplier’'s non-compliance which can occur during an

satellite development phases.

In its current version, MOST is a SpaceWire librarfy
OPNET ® (Open NETwork modeler 17.5).
oriented software allows SpW devices configurativenks to
a set of attached attributes. Its graphical edgitorvides a full
set of possibilities to display and analyze simafabutputs.

Two versions of MOST currently exist: one earlysien
which has been intensively used by Thales Aleniac8pto
make its internal simulations and including a wigfgaceWire

David Jameux

On-Board Data Systems Division (TEC-ED)
European Space Agency
Netherlands
David.Jameux@esa.int

components library: MOST v1.4. Another version usrently
under development and brings many enhancements: TMOS
v2.2. Both versions will be presented in this doeatrwith a
focus on the latter.

II. FROMMOSTvV1.4TOMOSTV2.2

MOST is the result of continuous developments é&ffor
performed since 2006: first as internal Thales Ee8pace
development, then with support of ESA to bring MO®Tan
operable stage through SpaceWire library developmen
validation with representative test cases (scientiission and
robotic mission), and finally cross-validated witheal
hardware.

The progressive stages of development of MOST v1.4
followed the protocol stack of the SpaceWire statsta
Physical level, Character level, Packet/Networlelékien User
layer for Spw (PID, RMAP, PTP,...) and was internally
developed accordingly as depicted in the followfiggre:

This brings a highly modular structure managed ugho

Packet
generator

0

ok genarator

TimeCode
generator

RMAF protocol manager

Spacewire Building Block

RMAF protocol node with timecode generator

finite-state automates which was very convenieminduthe
initial SpaceWire CODEC development phase at thet ob

This object-additional OPNET processing time for automates gssing.

This first development generated MOST v1.4 whichswa
delivered to ESA by end of 2011 and was used nfetance, by
ESA to analyze the Bepi-Colombo SpaceWire-basedopdy
Command & Control network and by TAS for the MTG
SpaceWire network along with other TAS missions.

MOST v1.4 includes components developed according t

some specific SpW component datasheets: the SpW-10X

switch with GAR mechanism and round robin for ptior

management, the SMCS116SpW, the SMCS332SpW, the

RTC. This MOST library has also been enriched gigneric
nodes fully representative of the SpW standard inoliding
protocols building blocks such as RMAP, STUP andEP

In parallel to the TAS simulation activities andhtauous
MOST v1.4 improvements with the addition of manyIRD
functionalities (including dynamic reconfiguratiohswitching
table through RMAP messages), ESA started the dewednt
of an experimental branch of MOST (v2.1). This depment
aimed at improving the usability of the tool by gieg the
physical, character and packet/network layers single SpwW
CODEC layer and at allowing the construction of tpcol
stacks as depicted in the following figure:

oy B g ey
4 pplication Layer 1 |4 pplication Layer 2 4 pplication Layer 3
RMAP stwork Managment

:

el
=

Application Layer

SpW Codec

;

;

SpW 1

This new architecture had the advantage of progidin
clearer view on the atomicity of the SpaceWire apts: one
SpaceWire CODEC including the Physical, Characted a
Packet/Network levels developed in C-code

together through OPNET Modeler® exchange links. MIOS
v2.2 currently under development by TAS took asuinihis
new architecture with the aim to, keep the advagaaf the
ESA solution while adding all features from MOST.4/1

lll. MOSTV2.2DESCRIPTION

MOST v2.2 targets a release to the SpaceWire corntynun
in 2013. In that respect, the library has to beusttand easy
enough to be used not only by its developers. iagsbeen at
the heart of the development undergone since eA61#.

First of all, this new MOST library includes somewn
highly generic components to allow designing neksowith
very generic behaviors. Each of these generic coms is
made of multiple building blocks and shares a commo
building block with all the others: the Spw CODEQigh
fully complies with the ECSS-E-ST-50-12C SpaceWirhis

instedd o
automates, then PID, RMAP or CPTP elements contiecte

TX Data Rate: this value corresponds to the physica
transmission rate of the SpaceWire link,
RX Buffer Size, this value represents the sizehef t
CODEC reception buffer used to send the right numbe
of FCT,
Show NULL Messages allows to display NULL
messages on SpaceWire link,
Timer Disconnect is the time at which the CODEC
disconnects its SpaceWire link (FDIR),
Timer Parity Error is the time at which the CODEC
simulates a parity error on the next characatezived.
This Error causes a Disconnect of the SpaceWite lin
(FDIR),
Delay For Disconnection After Parity Error is th@é
between the detection of a Parity Error and the
disconnection of the SpaceWire link (FDIR),
Debug Level with 4 different values correspondiag t
the level of details on the internal CODEC behatgor
print in the Console

Four components are currently implemented in MOST
v2.2: a Native Node, a Generic CPTP & RMAP Node, a
Generic Switch and a comprehensive simulation ef 1BX
router with GAR mechanism, round robin for priority
management, and the implementation of its RMAP meana
for component dynamic tuning (switching table, port
enabling/disabling, link speed selection, etc...).

The Native Node is a very simple component,
implementing a SpW CODEC and a generic User Aptitioa

Reqister

The User Application of the Native Node manages the
SpW CODEC as a packet handling level which candes sis
a higher level from the ECSS-E-ST-50-12C point igw It
handles the TICK IN & TICK OUT interfaces and the
exchange of bytes with the CODEC. It provides ptcke
management: packet generation and packet recepfion.
support this feature, it implements an input buffeassemble
the bytes received from the CODEC before usingurit] an

CODEC building block can be tuned by the MOST usemoutput buffer to send byte per byte their conterihe CODEC.
changing a set of parameters available in the OPNET is configurable through the following parameters

Modeler® user interface:
Link Enabled to enable/disable a port,

not send Null characters but waits for Null chagest
to switch to Started mode,

Link Start is used to enter in Started mode (séab

characters). This attributes should be set to tigaib

Autostart is set to enabled but MOST accepts both,

Autostart is used to enter in Ready mode, node does °

Timecode Master (Enabled/Disabled) defines if the
Node can issue Time-Codes,

Timecode Interarrival Time is the period of Time-

Codes emission,

Time Code Start / Stop Time is a time defining when
the Time-Code service is enabled (respectively
beginning and end),

« Debug Level with 4 different values corresponding t from the data received from the CPTP and the RMAfeKs
the level of details on the internal Native NodeetJs before sending their bytes one by one with a FIFG2¢ss and,
Application behavior to print in the Console, on the bottom-up direction, transfers the bytesmfrthe

« Packet Type is an integer between 0 and 98, thiSODEC to one of the protocol layers depending @n RID
parameter allows to identify the packets sent gy thinformation. CPTP and RMAP modules implement the
Node so that OPNET can compute its specific End-Toprotocol part of each standard: packet formattiogpeding to

End Delay, each protocols. Their respective User Applicationglement
« Cargo Size is the size of the packets sent by th@ reception buﬁer and manage the actions relatdiet packet
application to the CODEC, content analysis.

e SpW Packet Interarrival Time is a waiting time
between each packet sent by the Node,
e SpW Destination Address defined the destination o

the packet. MOST accepts logical and physicaF

addressing,

e Packet Generator Start / Stop Time is a time dwfini
when the Packet generation service is enable
(respectively beginning and end),

e SpW Packet Deadline is the maximum time a packe}
can take to cross the network from its source to

destination. The destination Node computes the reqi1r

end-to-end delay and in case it is higher than th
specified value, generates an error in the OPNE
console.
The figure here-below provides an overview of thegive
Node MOST architecture with a Register for Time-@ou
storage:

As it can be seen, the Generic CPTP & RMAP Node is
more complex; it includes the implementation of Ridtocol
(ECSS-E-ST-50-51C), RMAP (ECSS-E-ST-50-52C), CPTP
(ECSS-E-ST-50-53C) and a generic User Applicatiotap of
each of the CPTP and RMAP protocol layers:

The Network/Data Layers Interface is a layer introetl
for direct management of the SpwW CODEC interfaces
including time-codes handling and exchange of bwiitis the
upper-layers, it also performs the PID check onrdeeived
packets to route the packet to the relevant upperiprotocol
between RMAP and CPTP. To do so, this layer imptemen
the top-down direction an output buffer to assentiidepackets

equest.
The Generic CPTP & RMAP node can be configured
ough a similar set of parameters than the Natiede with
ome additional features:

For the Native Node as well as for the Generic CRIP
RMAP Node, the embedded User Application basically
perform packet sending and consumption whateveér dlogual
ontent. The RMAP User Application is more advancded
allows sending a request which is pre-configurethieyMOST
user (allowing for instance to configure a switcmfiguration

ble). The format of this request is checked egiker level to
etermine its effect (for example: READ, READ-WRITE
READ-MODIFY-WRITE), or simply discard in case ofvialid

Network/Data Layers Interface specificities:

NDLI Emission Buffer Size is the size of the
packet emission buffer,

NDLI Local address is the logical address of a
Node, this value shall be comprised between 32
and 254. It is optionally used to check the readive
packets address and discard invalid packets,

NDLI Local address Check, this value
enables/disables the address check,

CPTP & CPTP User Layers specificities:

CPTP packet EEP Status allows to end a packet
with EEP (value = 1), by default all packets are
ended with EOP,

CPTP Elephant Message Size: this parameter
defined the size of an elephant packet,

CPTP Elephant Message Destination Address,
CPTP Elephant Message Start Time is a time
defining when the elephant message is sent,

CPTP Reception Buffer Size: this size shall be
greater than the biggest packet received,

CPTP Service Rate sets the rate at which packets
are destroyed by the application

RMAP & RMAP User Layers specificities:

RMAP Command Value is the content of a RMAP
command to be transmitted,

RMAP Service Rate sets the rate at which packets
are destroyed by the RMAP application,

RMAP Key is the value of local key for compare
with RMAP request,

RMAP Reception Buffer Size: this size shall be
greater than the biggest packet received,

RMAP Reply Delay is the delay between the
reception of a request and the creation of itsyrepl

« RMAP Local Address is the local address used tanatrix that implements the SpW Network level. Thiatrix
send a reply and shall be set between 32 and 254can switch packets from a port to another including

« RMAP Reply Packet Type is the packet type useconfiguration packets to be handled by a local RMasger
for reply packet, this value shall be an integerable to receive and interpret the requests aneconfigure the

between 0 and 98
The Generic Switch is a 32-port (31 external pgrtss 1
connected to a configuration port) Switch confidgileseither in
Static Mode (no reconfiguration on the initial &plor in

Dynamic Mode (taking into account RMAP messages to

change the routing table). It is able to performour
Adaptative Routing and message priority management.

THz1

matrix dynamically.

The routing switch building blocks can be configlre
through the following additional set of parameters:

e« Watchdog Timer (Enabled/Disabled): protects the
network of elephant messages. If the time taken to
transmit a message is higher than the timeout vétee
packet will be destroyed automatically in the stvitc

e Timeout of watchdog timer,

e Switching Table to configure the Switch (including
header deletion capability, priority and one or enor
output ports per logical address for GAR).

Apart from the RMAP reconfiguration requests, tHdA®P

& CPTP User Applications implement currently vergngric

behaviors based on data generation (with seleatiosize,

address, periodicity, emission buffer sizing) anditad
consumption (reception buffer sizing, applicati@nvice rate).

These basic settings can be refined through the afse

parameter files (“gdf’ files) which allows configng for

instance a non-periodic data generation sequeneepaickets
sequence of different lengths, with different deetion
addresses, ended with EEP/EOP, etc... However,proia
action is taken pending on the packet content. khid of
behavior is related to upper-level application (PUS
instance) and is currently not implemented in MO&I2.

However, a MOST user can implement such function€-

code in the RMAP User or CPTP User applicationsgs Has

already been done successfully by TAS in the fraofie
multiple simulations.

IV. SOMEOFTHE MOSTV2.2FEATURES

MOST v2.2 aims at providing full visibility on Spel/ire
networks behaviour and provides many ways to candig
them. Addressing can be either physical or logigadrity can
be provided as per ECSS-E-ST-50-12C standard als asel
header deletion. Address check can be performadngy at
receiver level. Moreover GAR and dynamically coufigble
switching tables are implemented in the Genericp82-
switch.

MOST v2.2 allows configuring the links data ratéise
CODECs reception buffer sizes, the packet emissiad
reception buffers. This has proved very usefuksi the effect
of SpaceWire network congestions over applicatiand the
possible loss of packets due to emission buffergaton. As
the application does not necessarily consumes imgpm
packets at the speed of its underlying SpW CODESEraice
rate has been put in place to simulate the actwdh d
consumption capability and provide better represaiity for
network sizing. For instance a Payload Data Hanlihgt
receiving science packets from a high speed SpaeeWi
network and sending it over a lower speed Radiopkercy
Unit or Mass Memory with an intermediate bufferimgght

As it can be seen on this figure, the Generic 3witc block the network in case of reception buffer sation.
includes 31 SpwW CODEC connected through a switching

Initialisation of the SpaceWire network is alsodnkinto
account with the simulation of exchange of Null sagges, and
implementation of LinkStart, AutoStart and LinkEtalflags,
triggering the corresponding intialisation sequemdgth the
final sending of the Flow Control Tokens:

MOST, from parity bit error to EEP insertion, eleph packet
generation, or spontaneous disconnections.

At last, MOST v2.2 has a clear implementation of th
SpaceWire protocol stack, providing high flexilitythe design
of SpaceWire networks through the delivery of genaodes
and switches including basic applications with ues
insertion of user-made C-code in identified ardaf® generic
User Application code for more advance behavior
implementation (PUS or instrument HKTM packets gatien
pending on the reception of a special TC).

It is also possible to design user-made SpaceWire
components through the development of specific ralsbes
(for instance a single User Application with mukip

FCT are |mplemented and exchanged accordmg to thenderlying CODECs) through modifications of the gen

received data characters flow. We can see herevhiblat on
the sending direction of the link, a small packeginitted with
data characters and an EOP (the “small” ending acier),
while on the reception direction of the link, a F@&Temitted
after 8 data characters have been sent:

..

NULL characters are also taken into account, pliogid
realistic time-code propagation jitters and timeacpg
between symbols. These NULL characters can eitleenb
showed or masked in the simulation with the drawbsrc
lengthen the simulation time and results procesasthe links
appears very busy (constant oscillations on thk).liTheir
effect is anyway taken into account to compute sbeding
time of the emitted characters so masking them doesnpair
the representativity of the simulation.

Wormhole routing and the corresponding switchingtgpo
blocking until end of packet transmission is an domant
aspect of SpaceWire and can be analysed in deisiisy
MOST:

Transrmitter 3 =

We can see on the previous flgure the effect ogeetlon
on three nodes willing to send packets to a sitigkceiver”:
some data characters are stored in the input lufiérthe
routing switch then, when saturated, the commuigicats
blocked until the emission port is free.

FDIR is a major feature for avionics and data hiagd|
engineers. In that respect, many events can bgeteg in

components using the OPNET interface (for more acke
users). This is optimized through the possible se-of the
already developed building blocks and has beeropadd by
TAS in multiple occasions (for Virtual Channel Mplexing
machines, simulation of Masss Memory behaviorsc&péare
couplers with different buffering schemes, etc...).

This library is scheduled to be enriched in theufeitwith
other specific components existing on the marlatjristance
the RTC, SMCS116SpW and SMCS332SpW as it was e ca
in the former MOST v1.4 version. Other implememtasi
could be foreseen on a case-cy-case basis.

V. CONCLUSION

MOST aims at enriching OPNET Modeler® with an
operational SpaceWire library available to the $j¥dice
community. The recent development performed infittume of
an ESA contract extension brings MOST a major steger to
this objective. Simplification and modularity enlsement to
facilitate the design of networks and new protoeos the key
features driving the current developments.

ESA own the MOST IPR and intend to release MOST 2.2
to the SpaceWire community in 2013. Some maintemamc
further developments of MOST 2.2 and improvemeritshe
performed for ESA by Thales Alenia Space until ®eto
2014.

VI. REFERENCES

[1] “SpaceWire — Links, Nodes, Routers and NetwQrks
ECSS-E-ST-50-12C, $1uly 2008
[2] “SpaceWire protocol identification”,
ECSS-E-ST-50-51C,"5February 2010
[3] “SpaceWire — Remote memory access protocol”,
ECSS-E-ST-50-52C "5February 2010
[4] “SpaceWire — CCSDS packet transfer protocol”,
ECSS-E-ST-50-53C,"5February 2010
[5] ISC 2010 — “Simulation of SpaceWire Network” —
Thales Alenia Space - France
[6] “Modeling of SpaceWire Traffic” DASIA 2011 & 2R —
Thales Alenia Space - France
[7] “MOST User Manual” 1004350741 "8March 2013 —
Thales Alenia Space - France

