
Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Time and Space
Partitioning kernel
formalisation

Andrew Butterfield, David Sanán
Lero @ Trinity College Dublin

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Time And Space Partitioning Kernel
Formalisation: Objectives

• Savoir-IMA is exploring a time-space partitioning
(TSP) kernel

• This part of MTOBSE looked at:
– developing a Reference Specification
– formalising the specification

(Abstract Specification)
– exploring feasibility/costs of formal verification.

• High level goal:
– move towards Common-Criteria/Separation Kernel

Protection Profile certification standards (EAL5+)

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Key Deliverables:
 Reference Specification for a partitioning and separation kernel.
 Formal Abstract Specification of the above
 Formal Methods Toolset

Support Material:
 Formalism Evaluation and Choice
 Abstract Specification Documentation
 Formal Verification Process Assessment

Time And Space Partitioning Kernel
Formalisation: Deliverables

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Reference Specification

 Reference Specification comprises (ECSS-E-ST-40C):

 Software Requirement Specification (SRS)

 Interface Control Document (ICD)

 Architecture Design Document (ADD)

• Key Inputs:

• Pre-existing specifications: AIR-2, XtratuM, PikeOS, sel4.

• Common Criteria (CC)

• Separation Kernel Protection Profile (SKPP)

• IMA-SP SEP SSS

• IMA-SP TSP Services Specification

• ARINC 653

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Software Requirements
The design is based in three majors logical
blocks:
 - Partitioning Functionality.
 - Low level Functionality.
 - Security Functionality.

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

What is the configuration data of a partition?
What are the states of a partition?
How are resources assigned to partitions?
How are partition scheduled?

Software Requirements

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

What mechanisms do partitions do for
communication?
What types of communication between
partitions are possible?
What are the characteristics of the
communication?

Software Requirements

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

How are faults managed?
How are events stored and who audits them?
What error levels are managed?
What to do on a partition fault?

Software Requirements

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Software Requirements
How memory mechanisms are managed?
How traps are handled?
What clocks are needed?

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

What kernel events must be audited?
What flow between partitions is allowed?
How to handle flows not explicitly assigned?
What is the necessary partition data for the security?
What rules on that data must be enforced?
What privileges do partitions have?

Software Requirements

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

In what functional states can the kernel be? What operations
can be performed on the kernel?

What is the policy to change kernel configuration?
What is a kernel secure state? How to detect it?
What to do when kernel failures are detected?

Control of spatial and temporal quotas allowed to partitions.

Software Requirements

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Interface Control

These logical components provides user and system partitions with services.
Based on IMA-SP, Arinc 653, and SKPP.

Partition:

mode and status.
Communication:
 port creation, messages, config.
HealthMonitor:
 access monitoring logs.
Virtual Machine:
 clocks, timers, cache, interrupts…
Kernel:
 restart, halt, re-schedule…

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

From the specification to the
implementation

 Requirement Partition Control (PM_PC)
From ARINC 653P1-3 2.3.1.2

The kernel shall control and maintain the current state of each
partition by means of a partition control table storing the partition
state. The partition control table maintains the following list of
attributes for each partition:
Partition current state.
Partition initialization reason.

Requirement Partition Current State (PM_PCS)
From IMA-SP SEP SSS v.1.1 IMA_SEP_900, IMA_SEP_901,
IMA_SEP_902, IMA_SEP_903, and IMA_SEP_904

Partitions can be in the following states:
Cold_Start - Warm_Start: Initialization of the partition. The kernel is
only allowed to create intercommunication channels in the start
states. Warm and Cold start are used to differentiate when it has
been possible to retain data from before the restart. At restart of the
system all partitions shall be in the Cold_Start state.
IDLE: Termination state of the partition.

…

#ifndef _XM_KTHREAD_H_
#define _XM_KTHREAD_H_

#include <assert.h>
#include <guest.h>
#include <ktimer.h>
#include <xmconf.h>
#include <xmef.h>
#include <objdir.h>
#include <arch/kthread.h>
#include <arch/atomic.h>
#include <arch/irqs.h>
#include <arch/xm_def.h>
#ifdef CONFIG_OBJ_STATUS_ACC
#include <objects/status.h>
#endif

#ifndef _XM_KERNEL_
#error Kernel file, do not include.
#endif

struct guest {
 struct xmcPartition *cfg;
 struct kThreadArch kArch;
 vTimer_t vTimer;
 kTimer_t kTimer;
 kTimer_t watchdogTimer;
 vClock_t vClock;
 // this field is accessible

C Code Reference Specification

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Adopted Formalism

• A range of formalisms were surveyed in order to assess them for suitability

• Chosen: Isabelle/HOL
• Used by NICTA for sel4 kernel verification
• Well-established, industrial strength, very trusted proof-kernel

Tool-Chain:
 Isabelle/HOL 2013
 AutoCorres 0.9b1 (incl. C-Parser)
 XtratuM v3.3-1.3 (modified)

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Formal Model Hierarchy

Very Abstract Model:
high-level overview of
scheduler, partitions and
security policy.

Specification Model:
Provides a high detail view of
partitions, scheduler, inter-
partition communication,
trap manager, security
functions…

VAM

SRS

ADD, ICD

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Formal Model Structure

pre-existing infrastructure, and
data-type definition theories (4 theory files)

behavioural theories
and top-level entry point theory (15 theory files)

state definitions (19 theory files).

38 theories, 200 data types, 600+ definitions, 9200+ LOC

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

From the specification to the
implementation (2)

 Requirement Partition Control (PM_PC)
From ARINC 653P1-3 2.3.1.2

The kernel shall control and maintain the
current state of each partition by means
of a partition control table storing the
partition state. The partition control
table maintains the following list of
attributes for each partition:
Partition current state.
Partition initialization reason.

Requirement Partition Current State
(PM_PCS)
From IMA-SP SEP SSS v.1.1
IMA_SEP_900, IMA_SEP_901,
IMA_SEP_902, IMA_SEP_903, and
IMA_SEP_904

#ifndef _XM_KTHREAD_H_
#define _XM_KTHREAD_H_

#include <assert.h>
#include <guest.h>
#include <ktimer.h>
#include <xmconf.h>
#include <xmef.h>
#include <objdir.h>
#include <arch/kthread.h>
#include <arch/atomic.h>
#include <arch/irqs.h>
#include <arch/xm_def.h>
#ifdef CONFIG_OBJ_STATUS_ACC
#include <objects/status.h>
#endiif

 header{* Partition Management
Definitions *}

theory PartitionDef
imports Main Types
PartitionVirtualMachineDef
begin

text{*
 Partitions are defined according to the
Architecture Design Document
\cite{MTOBSE-ADD}
*}

section{* Partition structure *}

C Code Abstract Specification Reference Specification

We now have an intermediate abstract model

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Abstract Consistency/Validation

 Requirement Partition Control (PM_PC)
From ARINC 653P1-3 2.3.1.2

The kernel shall control and maintain the
current state of each partition by means
of a partition control table storing the
partition state. The partition control
table maintains the following list of
attributes for each partition:
Partition current state.
Partition initialization reason.

Requirement Partition Current State
(PM_PCS)
From IMA-SP SEP SSS v.1.1
IMA_SEP_900, IMA_SEP_901,
IMA_SEP_902, IMA_SEP_903, and
IMA_SEP_904

#ifndef _XM_KTHREAD_H_
#define _XM_KTHREAD_H_

#include <assert.h>
#include <guest.h>
#include <ktimer.h>
#include <xmconf.h>
#include <xmef.h>
#include <objdir.h>
#include <arch/kthread.h>
#include <arch/atomic.h>
#include <arch/irqs.h>
#include <arch/xm_def.h>
#ifdef CONFIG_OBJ_STATUS_ACC
#include <objects/status.h>
#endiif

 header{* Partition Management
Definitions *}

theory PartitionDef
imports Main Types
PartitionVirtualMachineDef
begin

text{*
 Partitions are defined according to the
Architecture Design Document
\cite{MTOBSE-ADD}
*}

section{* Partition structure *}

Model Verification to check:
 Data Consistency (Fully covered).
 System Calls (To be carried out).
 System Invariants (Explored).

Domain expert validation to check requirements and
model.

C Code Abstract Specification Reference Specification

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Formal Model: Validation

Req C_CC (Channel Communication)
“The kernel shall perform the inter-partition communication through channels
that define logical links between one source port and one or more destination
ports. The channel defines the communication transfer mode. A channel can
only communicate on ports implementing the transfer mode defined in the
channel.”

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Formal Model: Validation

Req C_CC (Channel Communication)
“The kernel shall perform the inter-partition communication through channels
that define logical links between one source port and one or more destination
ports. The channel defines the communication transfer mode. A channel can
only communicate on ports implementing the transfer mode defined in the
channel.”

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Formal Model: Proofs

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Code Correctness

 Requirement Partition Control (PM_PC)
From ARINC 653P1-3 2.3.1.2

The kernel shall control and maintain the
current state of each partition by means
of a partition control table storing the
partition state. The partition control
table maintains the following list of
attributes for each partition:
Partition current state.
Partition initialization reason.

Requirement Partition Current State
(PM_PCS)
From IMA-SP SEP SSS v.1.1
IMA_SEP_900, IMA_SEP_901,
IMA_SEP_902, IMA_SEP_903, and
IMA_SEP_904

#ifndef _XM_KTHREAD_H_
#define _XM_KTHREAD_H_

#include <assert.h>
#include <guest.h>
#include <ktimer.h>
#include <xmconf.h>
#include <xmef.h>
#include <objdir.h>
#include <arch/kthread.h>
#include <arch/atomic.h>
#include <arch/irqs.h>
#include <arch/xm_def.h>
#ifdef CONFIG_OBJ_STATUS_ACC
#include <objects/status.h>
#endiif

 header{* Partition Management
Definitions *}

theory PartitionDef
imports Main Types
PartitionVirtualMachineDef
begin

text{*
 Partitions are defined according to the
Architecture Design Document
\cite{MTOBSE-ADD}
*}

section{* Partition structure *}

Implementation Model.
Proof of Refinement: Create a refinement model.
Proof of implementation invariants.

C Code Abstract Specification Reference Specification

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Implementation Model

#ifndef _XM_KTHREAD_H_
#define _XM_KTHREAD_H_

#include <assert.h>
#include <guest.h>
#include <ktimer.h>
#include <xmconf.h>
#include <xmef.h>
#include <objdir.h>
#include <arch/kthread.h>
#include <arch/atomic.h>
#include <arch/irqs.h>
#include <arch/xm_def.h>
#ifdef CONFIG_OBJ_STATUS_ACC
#include <objects/status.h>
#endiif

 header{* Partition Management
Definitions *}

theory PartitionDef
imports Main Types
PartitionVirtualMachineDef
begin

text{*
 Partitions are defined according to the
Architecture Design Document
\cite{MTOBSE-ADD}
*}

section{* Partition structure *}

C-Parser

C Code Implementation Model

Input: C-99 subset
 No side effects in expressions.
 No reference to local variables.
 No unions and bitfields.
 No “goto” C statements.

Output: Isabelle definitions and
theorems.

Used XtratuM code as a test case – we had to modify it to fit the subset

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Model Refinement

Ops

Opi

R R

Specification

Implementation

αs

αi

α's

α'i

Mi refines Ms

Refinement uses a relation R that links
specification states to corresponding
implementation states.

We say that Mi refines Ms when for all
corresponding specification and implementation
operations (Ops,Opi), both transform initial
states related by R (αs R αi) to final states that
are themselves so related (α's R α'i).

When Mi refines Ms, the properties that
hold in Ms also hold in Mi

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Refinement (SW02)

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Vendor Verification Process

1. Bring vendor specification and code into alignment with
Reference Specification and ESTEC/formal coding standards.

2. Build formal model of vendor code
3. Formalise invariants for the vendor code.
4. Formalise refinement between code and specification
5. Prove refinement respects invariants.
6. Prove all API calls preserve invariants.
7. Prove all API calls satisfy corresponding abstract API specification.

Invariants are key !

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Artifact Families

Family MTOBSE Deliverable

SPM: Security Policy Model Very Abstract Model

FSP: Functional Specification Reference (SRS) & Abstract
Specification

HLD: High-Level Design Reference (ADD,ICD) &
Abstract Specification

LLD: Low-Level Design -

IMP: Implementation
Representation

 Modified XtratuM code and
C-Parser generated model

RCR: Representation
Correspondance

Added to C-Parser generated
model.

Common Criteria defines various families of Development artifacts.

Below we list these with approximate matching MTOBSE deliverables:

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Levels of Formality

Level Informal Semi-formal Formal Proof

EAL5 _ FSP HLD RCR SPM

EAL6 _ FSP HLD LLD RCR SPM

EAL7 _ LLD SPM FSP HLD RCR RCR

SKPP FSP LLD SPM FSP HLD RCR RCR

EAL: Common Criteria Evaluation Assurance Level
SKPP: Separation Kernel Protection Profile for High Robustness

“Informal”: A natural language description, written carefully and unambiguously
“Semi-Formal”: Using a language with a formal syntax and well-defined semantics (e.g., UML).
“Formal”: Using a language with a formal syntax and a mathematically defined semantics.

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Feasibility, Cost (CC,SKPP)

All estimates are provisional, and depend on continuity of expertise
and control of all tools and models.

Level Person-Months Notes

EAL5 7+ Mainly refining and
validating SW02

EAL6 25+ Nature of LLD
unknown to us

EAL7 43+

SKPP 43+ Both D03 and
SW02 are needed

None of the above require code (IMP) to be formally verified, but this has
been done by others, e.g, NICTA and sel4.

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Feasibility, Cost (Code Verification)

• NICTA’s costs
• Abs. Spec. - 4 person-months
• Haskell Prototype - 2 person-years
• Executable Spec - 3 person-months
• C implementation - 2 person-months
• Proof R&D - 9 person-years
• Proof of seL4 - 11 person-years

They could leverage off accumulated skill-set and
experience and redo this in 8-py (their estimate)

We see 8 person-years as a likely lower bound for
TSP code verification

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Achievements

• We have:
– developed a Reference Specification
– formalised this specification

(Abstract Specification)
– explored feasibility/costs of formal verification.

• Conclusion:
– EAL5+ formal verification is feasible
– Code verification is possible, but not cheap.

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Thank You!

Questions?

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Formalisms Assessed

• Isabelle/HOL
• Coq,
• ACL2
• PVS
• Z/Eves
• B-Method
• VCC
• TLC

Lero© 2013 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Very Abstract Model

Very Abstract Model: Provides a very abstract interpretation of the scheduler,
partitions and the security policy.

	Slide Number 1
	Time And Space Partitioning Kernel Formalisation: Objectives
	Time And Space Partitioning Kernel Formalisation: Deliverables
	Reference Specification
	Software Requirements
	Software Requirements
	Software Requirements
	Software Requirements
	Software Requirements
	Software Requirements
	Software Requirements
	Interface Control
	From the specification to the implementation
	Adopted Formalism
	Formal Model Hierarchy
	Formal Model Structure
	From the specification to the implementation (2)
	Abstract Consistency/Validation
	Formal Model: Validation
	Formal Model: Validation
	Formal Model: Proofs
	Code Correctness
	Implementation Model
	Model Refinement
	Refinement (SW02)
	Vendor Verification Process
	Artifact Families
	Levels of Formality
	Feasibility, Cost (CC,SKPP)
	Feasibility, Cost (Code Verification)
	Achievements
	
	Formalisms Assessed
	Very Abstract Model

