
December 11th, 2013

Development of Methodologies and Tools
for Predicable, Real-time LEON-DSP based
embedded systems

Marco Lattuada

Department of Electronics, Information and Bioengineering
Politecnico di Milano
marco.lattuada@polimi.it

Marco Lattuada – December 11th, 2013

Outline

 Overview of the problem

 State of the Art

 The MPPB platform

 Design scenario

 Proposed methodology

 Implementation

 Predictability vs. Performance

 Conclusions

2

Marco Lattuada – December 11th, 2013

Heterogeneous Multiprocessor
Platforms

 In many application fields, single core processors showed
their limit in terms of processing power and system budget

 Heterogeneous multiprocessors platforms allow to better
exploiting available resources to solve complex problems

 Examples of heterogeneous architectures:

General Purpose Processors + Dedicated Graphical Units

System on chips for mobile devices

 Porting of legacy C code applications designed for single core
system to new heterogeneous multiprocessors systems can
be an hard task

(Semi-)Automatic toolchains are required

3

Marco Lattuada – December 11th, 2013

Heterogeneous Multiprocessor
Platforms for Space Systems

 Characteristics derived from generic Embedded Systems:

Types of processing elements: General Purpose Processors
(GPP), Digital Signal Processors (DSP) and Field Programmable
Gate Array (FPGA)

Usually shared memory

Lightweight or no operating system, so reduced overhead due to
thread management

• Applications can be decomposed in smaller pieces

 Characteristics of Space Systems:

Available resources can be very limited

Predictability analysis must be guaranteed

4

Marco Lattuada – December 11th, 2013

Problem addressed by this NPI research

 Formulation and implementation of methodologies to (semi)-
automatically port a sequential C code to a heterogeneous
platform for space system

 NPI research project in collaboration with POLITECNICO DI
MILANO, RECORE

 Input:

Legacy C source code applications

Annotations provided by designer

 Output:

C Parallel application targeting heterogeneous platform

• Massively Parallel Processor Breadboarding (MPPB),
developed by RECORE

 Solution: C to C compiler

5

Marco Lattuada – December 11th, 2013

MPPB Platform: Overview
6

Marco Lattuada – December 11th, 2013

MPPB Platform: Characteristics

 Components of the architecture:

LEON2 processor

Two XENTIUM DSPs

Heterogeneous memories

High speed interfaces

Network on Chip + Bus

 No operating system: “Bare Metal”

 NUMA Distributed Shared Memory platform

Shared memory: common address space

Distributed: several memory devices

NUMA: Non-Uniform Memory Access:
• Different access time according to memory location

7

Marco Lattuada – December 11th, 2013

MPPB Platform: Memory Details

 LEON2:

I-Cache: 16KB – 2way set-associative – LRU policy

D-cache: 16KB – 2way set-associative – LRU policy

 XENTIUM:

I-Cache: 8KB

Local Data Memory: 32KB

 Memories:

256KB of SRAM close to XENTIUMs

256MB of DDR connected to NOC

256MB of DDR connected to bus
• 128MB cached private memory of the LEON2

• 128MB non-cached shared memory

8

Marco Lattuada – December 11th, 2013

Design Scenario

 No Operating System

 Single Application

“Single thread”

Multiple tasks: different tasks run at the same time on the
different processing elements

 All managed by application code

transfers XENTIUM object code

transfers data to/from XENTIUM

starts/waits for XENTIUM tasks

 DMA transfers exploited when possible

 Use of interrupts to signal end of

DMA transfers

XENTIUM computations

 I/O peripherals are not used

9

Marco Lattuada – December 11th, 2013

Problem addressed by this NPI research:
Details

 Porting of annotated sequential C source code application to
the MPPB platform

1. Decompose the application in tasks

2. Assign different tasks to different processing element

3. Generates the C source code of the application

 Initial research work

Only performance optimization is considered (no power)

Complex data memory allocation and splitting are not
addressed

10

Marco Lattuada – December 11th, 2013

Starting Point: the hArtes project

 Holistic Approach to Reconfigurable real Time Embedded
Systems (European FP6-IST project)

 Large project: 16 Industrial and Academic Partners – 17.34M
euros budget

 Aim of the project is providing a new approach for designing
complex and heterogeneous embedded solution.

 Two main contributions:

an heterogeneous multiprocessor platform composed by:

• Atmel Diopsis D940HF (ARM + DSP Magic)

• Xilinx XC4VFC140

A toolchain to easily exploit the computational power
provided by the board

11

Marco Lattuada – December 11th, 2013

The hArtes Toolchain

 Tools communicate through
XML files and Source Code
Annotations

 A subset of the OpenMP
pragmas is used to describe the
parallelism

 Profiling and mapping
information expressed using
custom pragmas

 Interactions with external tools
introduce further constraints
which have to be taken into
account by proposed
methodology

12

Marco Lattuada – December 11th, 2013

The Proposed Design Flow
13

Source

Code

Analysis

Clustering

Mapping and
Scheduling Partitioned

Application

Performance
Estimation

Dependences
Graphs

Clustered
Graphs

Marco Lattuada – December 11th, 2013

Design Flow:
Input

 Input of the design flow is the C source code of the
application

 Complete application allows to produce better results

Target libraries can be exploited for profiling

 Designer can provide hints to the toolchain

By annotating source code specifying parallel portions of
code or partial mapping solution

By limiting the analysis of the toolchain to part of the
application

 Suggestions will be evaluated, but can be rejected if not
profitable

14

Marco Lattuada – December 11th, 2013

Compiler structure

Front-end

Middle-end

Back-end

Checks syntax correctness of source
code and translates it into language
independent intermediate representation

Performs target independent
optimizations

Performs target dependent optimizations
and produces final assembly code

Assembly

Code

Source

Code

15

Marco Lattuada – December 11th, 2013

Design Flow:
Compiler-Like Structure

Exploits GNU GCC to checks syntax
correctness of source code and
translates it into intermediate
representations

Performs optimizations and
transformations

Produces the partitioned application
source code

16

Front-end

Middle-end

Back-end

Source

Code

Source

Code

Marco Lattuada – December 11th, 2013

Design Flow:
Analysis of Source Code

 Internal Representations of GCC extracted by means of a
GCC plugin are the starting point of the analysis

 All the state-of-the-art analyses and optimizations are
performed by GCC

 Performance estimation can produce inaccurate results if
based only on static information

 Dynamic information such as number of loop iterations or
branch probabilities can improve quality of results

Source code of the application is instrumented and
sequentially executed on the target or on the host
architecture to collect this information (path profiling)

17

Marco Lattuada – December 11th, 2013

Design Flow:
Dependence Analysis

 Identify all the dependences (control + data) between
operations

 One of the most critical parts

It has to be conservative: ignoring real dependences can
produce wrong code

It has to be accurate: add false dependences can reduce the
parallelism of the application

 Three approaches:

GCC alias analysis

GCC alias analysis + refinement

Dynamic Data Dependence analysis

• must be validated by the designer

18

Marco Lattuada – December 11th, 2013

Design Flow:
Partitioning

 Extraction of clusters of operations from sequential
application

 Based on analysis of dependences graphs

 Three different strategies

Sequential grouping or cutting

Parallelism extraction

Pipeline extraction

 Produces Hierarchical Task Graphs and Synchronous Data
Flow Graphs:

Potentially a graph for each loop of each function plus a
graph for each whole function

Nested loop represented as single node in parent loop
graph

19

Marco Lattuada – December 11th, 2013

Design Flow:
Pipeline Extraction

20

A

B

C

D

A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

A4

B4

Marco Lattuada – December 11th, 2013

Design Flow:
Partitioning

21

 Not all the extracted parallelism can be actually exploited

 Real platform has to be taken into account

Limited number of processing elements: 3

Overheads due to data transfers and task synchronizations

Limited available memory

 Fast estimation used to evaluate intermediate solutions and
to dimension tasks

Marco Lattuada – December 11th, 2013

Design Flow:
Mapping and Scheduling

 Each task has to be assigned to a processing element

 Implied data transfers have to be assigned to communication
elements

 Execution of order of task and communications assigned to
the same processing element is statically computed

 Elaboration and communication can be parallelized

 If a tasks is assigned to a DSP, all the functions called by it
are assigned to the same DSP

Potentially reduces the number of possible solutions

However a function can be assigned to more than a
processing element depending on its call points

22

Marco Lattuada – December 11th, 2013

Design Flow:
Mapping and Scheduling

 Assigning each task to the fastest processing element can be
not the best solution:

Overhead due to communication

Delay of tasks assigned to the same processing element

 Different possible design solutions:

Ant Colony Optimization heuristic adopted to compute the
final solution

Performance estimation exploited to evaluate the different
solutions

23

Marco Lattuada – December 11th, 2013

Design Flow:
Backend

 Selected solution is written back in form of C source code

 Data have to be explicitly transferred so their size must be
known

It can be a critical aspect in presence of pointers

 Target is space system, so rules to allow predictability
analysis of the code must be followed

e.g. not introduce further dynamic allocation

 At the moment MPPB can be exploited only through MPPB
API

TASTE infrastructure does not yet support this programming
model nor MPPB platform

24

Marco Lattuada – December 11th, 2013

Implementation

 The proposed methodology is being implemented in Zebu, a
tool part of the PandA framework

hw/sw co-design framework based on GNU/GCC compiler

25

http://panda.dei.polimi.it/

Marco Lattuada – December 11th, 2013

Case Study

 Algorithm to process raw frames coming from the near
infrared (NIR) HAWAII-2RG detector

 Open source application provided by ESA for benchmarking
purpose; frames data size can be customized

 Frame data size has been limited to fit frames in XENTIUM
local data memory

Optimization of data allocation and splitting is out of the
scope of this research work

 Code slightly modified and annotated

Random input data have been embedded in the
application instead of generated at run time

 Pipeline parallelism identified: up to 7 stages

Reduced to 3

 Speed-up obtained (w.r.t. LEON2) 1.56x

26

Marco Lattuada – December 11th, 2013

Predictability vs. Performance
Single Application

 Source of uncertainty:

1. LEON Caches

• Same situation of single core platform

2. XENTIUM Instruction Cache

• Ideally XENTIUM code fits in the Instruction Cache

3. Interrupts

• Some of them can be replaced with busy-waiting potentially
decreasing the performance of the application

4. Network on chip communications

• Can be sequentialized

 Non-Source of uncertainty

1. XENTIUM Data Memory

• Completely controlled by application

2. Scheduling

• Completely Static

27

Marco Lattuada – December 11th, 2013

Predictability vs. Performance
Multiple Applications

 Operating system without explicit support to MPPB

Applications running only on LEON does not require special
treatment

Applications offloading tasks to XENTIUMs cannot be preempted
during the whole offload

• This can potentially reduce resource utilization

Multiple communications can introduce further uncertainty

 Operating system with explicit support to MPPB

Significant modifications are required:

• Data transfer management

• Processing element – task affinity

No hardware support for task switching on the XENTIUM

Schedulability analysis has to take into account further
constraints

28

Marco Lattuada – December 11th, 2013

Conclusions

 A design flow for porting sequential application to
heterogeneous multiprocessors embedded systems has been
presented

 The proposed flow integrates:

Application analysis based on exploitation of GNU GCC
intermediate representation

Application partitioning based on vertices clustering

Performance estimation using performance models built
with linear regression

Mapping and scheduling based on Ant Colony
Optimization

 The proposed flow generates source code exploiting MPPB
API

29

