

EagleEye Evolution towards Time and Space Partitioning

Final Presentation, ESTEC, Dec 11, 2013

Outline

- TSP
- EagleEye TSP project
 - Before: V4.0
 - After: V5.0
 - Design issues
- EagleEye TSP validation
- Recommendations for Applying TSP to OBSW
- Recommendations for Future Work

Consortium

- Space Systems Finland
 - Panu Kauppinen, Niklas Holsti, Victor Bos
- Bright Ascension
 - Peter Mendham
- Universidad Politécnica de Madrid (UPM)
 - Juan Zamorano, Juan A. de la Puente
- fentISS
 - Miguel Masmano
 - Universidad Politécnica de Valencia (UPV)
 - Alfons Crespo

The project

- Goal: port the EagleEye reference mission to a Time and Space Partitioned Platform
- Customer: ESA, technical officer: Felice
 Torelli
- Started in February 2012

Time and Space Partitioning

Time and Space Partitioning

- Origin: Integrated Modular Avionics ('90s)
- Why:
 - Save on mass, volume, and power
 - Mixed criticality systems on one OBC
 - Fault containment
- How: IMA-SP

IMA-SP

	App 1		App n		Ю Арр
TSP	Partition OS		Partition OS		Partition OS
	Sys	stem E	xecutive (hype	rvi	sor)
HW	PM				

Evolution towards TSP

- From federated systems
 - combining CSW PM and Payload PM(s)
- From monolithic systems
 - Distributing CSW over partitions
 - E.g., EagleEye CSW

The EagleEye TSP Project

Before: CSW V4

Mission Manager		Data handling		Payload	
AOCS	Power Control		Telemetry store		Thermal Control
PUS OBOSS III					
SOIS subnetwork				acol ink	
MIL-STD-1553 SpaceLink					Jacelink
RTOS (RTEMS)					
PM (LEON2)					

After: CSW V5

DMS	Payload	IC)	AOCS	FDIR
Mission manager	Payload			AOCS	TSP FDIR
Data handling					
Telemetry store		S work			
Power control		SOIS subnetwork	Link		
Thermal control			SpaceLink		
OBOSS III PUS	OBOSS III PUS	MIL-ST 1553			
AdaORK+	AdaORK+	RTEMS		XAL	XAL
	Separatio	n micro	kernel	(XtratuM)	
	PM (LEON3	with N	IMU)	

Rationale for this partitioning

- Obtain a single-language / run-time
- Anticipate mixed criticality system
 - I/O is critical
 - Therefore, qualified OS needed in I/O partition (RTEMS)
- Imitate typical business situation:
 - AOCS is developed by a third party
- Reuse CSW V4 as much as possible

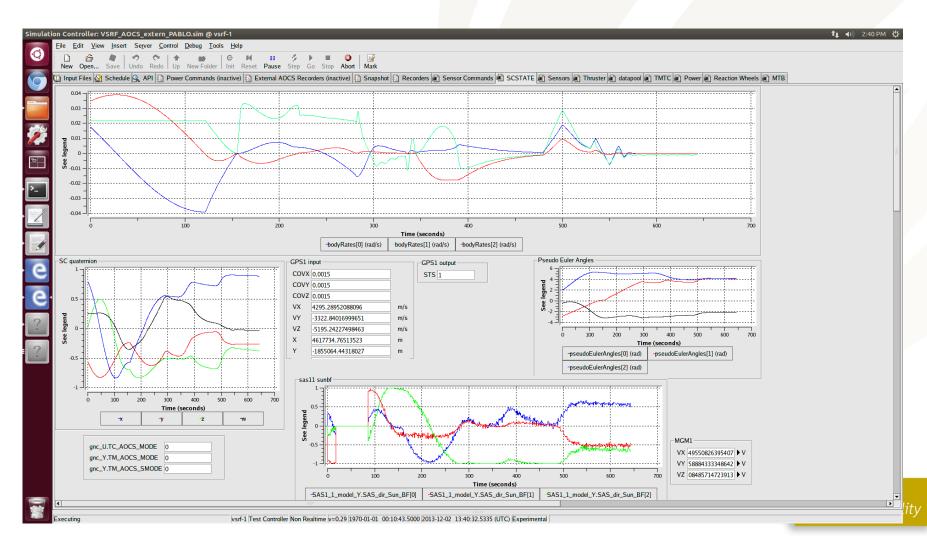
Design issues

- SW components distribution
- Inter-partition communication (IPC)
- Partition programming language
- Partition OS
- PUS data handling
- I/O handling
- Scheduling
- FDIR strategy
- On-board SW maintenance

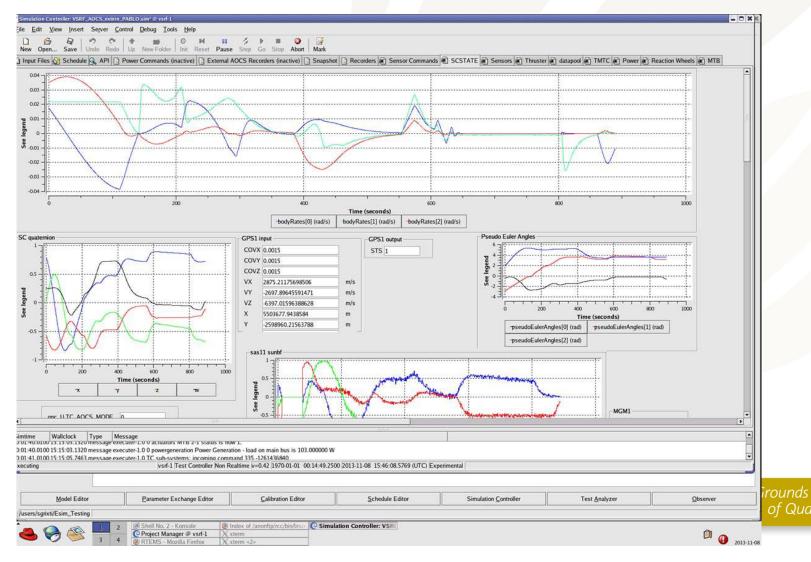
Partition schedule

Time	Partition	Purpose	
0	I/O	Sensor data acq, spacelink proc	
25	DMS	DH, sensor data to AOCS	
60	I/O	SSMM commanding, spacelink proc	
75	AOCS	AOCS proc, actuator data to DMS	
100	I/O	Thermal commanding, spacelink proc	
125	DMS	AOCS data forwarding to I/O	
150	I/O	Actuator commanding	
175	Payload	Payload DH and commanding	
200	I/O	PCS and spacelink proc	
225	FDIR	FDIR monitoring, commanding, rep.	

EagleEye TSP Validation


Test configurations for CSW V5

- Development SVF (ATB workstation)
- ATB SVF (open loop)
- ATB SVF connected to EuroSim (closed loop)



CSW V4 AOCS: Full test

CSW V5 AOCS: Full test

TSP Demonstrator

- TSP FDIR
 - Partition reboot / shutdown
 - TSP health monitoring
- Execution of partial system
 - During unit testing
 - During system integration
- Faulty applications (AOCS, Payload)
 - Application crash
 - WCET overrun

Recommendations for Applying TSP to OBSW

Recommendations for TSP OBSW

- Many lessons learned on EETSP
- Can extract some general recommendations
- I/O handling
- Partition scheduling
- Centralised FDIR
- Location of PUS handling
- IPC patterns

I/O Handling

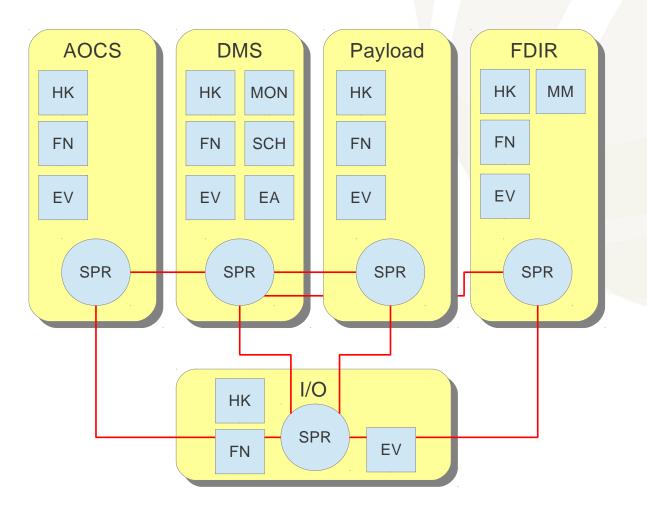
- I/O is time intensive
 - Especially if I/O partition must be active during complete I/O operation
- Can lessen impact on partition schedule
 - DMA (e.g. MILBUS send lists)
 - Multi-core
- Impact on partitioning guarantees
 - Spatial partitioning impact of DMA solved with IOMMU
 - DMA and multi-core have temporal impact

Partition Scheduling

- Partition schedule is crucial system design
 issue
- Difficult if porting existing software
 - Sufficient dynamic execution information may not be available
 - Need WCET information for OBSW functions that are to be allocated to partitions
- When assessing risk of porting SW to TSP
 - Consider partition schedule
 - Analyse existing data pack for sufficient dynamic design/ WCET information

Partition-level FDIR

- Centralised partition-level FDIR in EETSP
 - Combination of hypervisor health monitoring and partition watchdogs
 - Worked well and is recommended
 - Could be a template for a "standardised" FDIR
- IPC health monitoring not robust enough
 - Partition failures may cause IPC queues to fill
 - Babbling idiot and failed receiver cases
 - Need ability to monitor health of queuing ports
 - Requires modification to hypervisor



Location of PUS Handling

- PUS Handling in CSW v4 all in Ada
- Requirement to partition on language
 - Either locate PUS handling only in Ada partition(s)
 - Or port some PUS handling to C
- A more distributed architecture for PUS is recommended
 - Similar to PUS split between OBC-Payload
- Not possible on EETSP due to effort (and risk) required to port OBOSS elements to C

Distributed PUS

This is just an example!

IPC Patterns

- Recommend IPC design patterns are used
- Propose three, based on experience
- Loosely-coupled messaging
- Loosely-coupled periodic update
- Client-server

Loosely-Coupled Messaging

- Packet based
- No dependence on acknowledgements etc.
- Both source and destination are stateless
 - As far as communications are concerned
- For example
 - PUS packet forwarding
 - Some PUS service handling
- Uses queuing ports
- Need to be able to characterise flow rate

Loosely-Coupled Periodic Update

- Periodic data, naturally becomes "stale"
- For example
 - Watchdogs
 - Data acquired from MILBUS
 - AOCS inputs and outputs
- Both source and destination are stateless
- Uses sampling ports
- Need to be able to characterise refresh frequency

Client-Server

- Request/response pattern
 - Simple, stand-alone transactions
- Stateless server
- Two-state client
 - Idle/waiting for response
- Need timeout conditions in client
- Need to
 - Match responses to requests
 - Characterise message flow and response times
- Suitable FDIR needed to protect IPC queues

Recommendations for Future Work

Further Work

- EETSP has been a challenge but many useful lessons learned
 - ATB/EagleEye ready for more research in TSP
- More lessons could be learned
 - Using EagleEye including CSW
 - Using EagleEye but replacing CSW
 - In an alternative setting

Further Work on ATB/EagleEye (1)

- Improve the realism of SVF and RTB
 - MILBUS send lists on SVF
 - Hardware watchdog(s)
 - OBC redundancy and reconfiguration module simulations (SAVOIR OBC architecture)
 - Boot process (e.g. use of NV boot memory)
- Port TSP CSW to new SVF and RTB
 - Investigate I/O handling better, including DMA
- Investigate OBSW maintenance
 - Booting, patching etc. may require hypervisor work

Further Work on ATB/EagleEye (2)

- Investigate "standard" FDIR partition
 - Include IPC monitoring
 - Might require updates to hypervisor
- Investigate multi-core
 - Could use existing CSW as basis
 - Particularly interested in I/O handling
 - Could also look at an I/O co-processor
- Port or new implementation of EE mission using OSRA, including TSP

Recommended Tool Improvements

- XtratuM good hypervisor but better tooling needed
 - Needs centralised and coordinated build system
 - Better integration of configuration into code
 - Configurable unit and integration test framework
 - Better support for interactive debugging
- AdaORK+ good but would benefit from tool support for working on resource-constrained systems
 - Especially assistance with stack allocation