
© 2013 Terma A/S 1 © The Terma Group 2013 1

OBC INITIALISATION SEQUENCE AND ATB
REMOTE ACCESS
Mariarosaria Cardone, Project Manager
Dr. Mattias Holm, Technical Project Manager
Ignacio López, System administrator
Miquel Català, Sim & validation engineer
Yi Tan, Senior engineer
Michael Larsen, Senior engineer

© 2013 Terma A/S 2 © The Terma Group 2013 2

• Introduction to the project
• Remote Access to the Avionics Test Bench at ESTEC
• The Initialisation Sequence and the OBC Initialisation Converter
• The TSIM like interface to the ESOC Emulator 2.0
• Feedback to SAVOIR

Outline

© 2013 Terma A/S 3 © The Terma Group 2013 3

Introduction

• SAVOIR group has been working on providing generic building blocks for
reusable avionics.

• Flight Computer Initialisation Sequence – ESA Requirements
• Implement Initialisation sequence for the ATB
• Feedback to SAVIOR for improving generic initialisation sequence requirements

• ATB is installed at ESTEC Avionics Lab
• Long colocations for contractors
• Difficulties in getting support for problems with the board when e.g. the PM

board is located at a contractor’s site.
• Remote access with SCOS connecting to the ATB remotely via the Internet

would help.
• ATB in its SVF configuration supports multiple emulator cores

• No support for running with ESOC Emulator 2.0

7 January 2014

© The Terma Group 2013 4

REMOTE ACCESS

7 January 2014

© The Terma Group 2013 5

• Currently SCOS2k is in the EGSE reference facility at ESTEC.
• If SCOS2k would be moved outside ESTEC, situation would improve for

contractors working with the system.
• SCOS2k users can stay at home…

Introduction: Remote Access

7 January 2014

Internet

SCOS2000
at contractor location

ATB-RTB at ESTEC

EGSE Reference
Facility

ESI Router

OBC Init
Converter

OBC

PM: GR-CPCI-AT697

GRMON

TM/TC SCOE

RASTA-TMTC

RASTA-IO

UART A&B

DSU
UART

EGSE Router Protocol (over TCP/IP)

© The Terma Group 2013 6

Remote Access

• Easy setup for SCOS2k to connect to remote ESI Router:
• Modify variables EGSE_EGW_SERVER and EGSE_EGW_SERVER_PORT on MISCconfig configuration

file.
• IP of CCS/SCOS must be resolvable through reverse DNS.

• VPN Software provided by ESTEC.
• VPN Blocks all Other Network Connections
• Run either with physical console or VM, not remote.

• Terma used a local LAB to test the system
• Simulated VPN connection (i.e. firewall blocking everything but relevant ports)
• Network reliability has been explored in local lab

• Remote work normal scenario
• Remote user configure CCS system for the external ESI router and port
• User start ESTEC VPN software
• CCS work can be carried as normal.

7 January 2014

© The Terma Group 2013 7

Remote Access

• When using VPN, network reliability and latency could be an issue.
• CCS checkout system has been designed for local connectivity with the router. When CCS +

VPN connection ends abnormally, human intervention may be need.

• Problem scenario:
• VPN is connected
• CCS -> ESI connection established.
• VPN is disconnected (ESI is not properly notified about disconnection).
• CCS session is closed by user or unexpected failure.
• VPN is re-established
• New CCS -> ESI connection is tried

• ESI router see a running connection and a trial from the same computer to reopen a running session.
• Workaround: Script that scans ESI router log files for session lockups and tries to recover

the situation without human intervention.
• Sends close signal, to ensure ESI router terminates the TCP connection.
• Allows reconnection afterwards.

• Remember: With remote access the contractor does not have the ability to trouble shoot issues on
the ESTEC side with e.g. the ESI router.

7 January 2014

© The Terma Group 2013 8

Remote Access
• With remote access the contractor does not have the ability to trouble shoot

issues on the ESTEC side with e.g. the ESI router.
• Plausible problem:

• Enable and disable commands are used in sequence
• Disconnection occurs between
• Disable command will either not be sent, or it will be delayed
• Ensure the remote on-board-software have timed commands for critical functions that

automatically disables themselves (e.g. fire thrusters in 20 seconds for 5 seconds).
• VPN connection with ESTEC tested.

• Acceptance tests with the initialisation sequence in the loop executed successfully
over the VPN connection with ESTEC.
• Enabling the initialisation sequence standby mode
• Usage of initialisation sequence standby mode
• Invalid telecommands

• Further improvements would include
• CCS and ESI have different timeouts that can be aligned.
• Analyse CCS-ESI router protocols to ensure proper session handling (e.g. by

providing usernames and passwords)
• Safe-Killing switch for the remote platform to bring all hardware components on

safe state.

7 January 2014

© The Terma Group 2013 9

THE OBC INITIALISATION SEQUENCE

7 January 2014

© 2013 Terma A/S 10 © The Terma Group 2013 10

Introduction: GR-CPCI-AT697

• Compact PCI board with an AT697 LEON2 chip
• 80 MHz
• 128 MiB accessible SDRAM (SDRAM chips replaceable)
• EDAC support for SDRAM

• GRMON connects to the board via serial cable
• Two serial ports routed to UART A and UART B on the AT697 chip.
• Flash memory soldered to the board. Two 16 bit wide Intel flash chips following

the JDEC CFI standard. 16 MiB flash memory total.

7 January 2014

© 2013 Terma A/S 11 © The Terma Group 2013 11

Introduction: Initialisation Sequence

• Boot Software
• First thing that executes
• Similar to BIOS, EFI, UBOOT, OpenFirmware, etc.
• Common features:

• Hardware initialisation
• Maintenance mode (e.g. command line for EFI and OpenFirmware, menu interface in

many BIOSes)
• POST: Power-On Self-Test
• Boot loader (at least the first stage boot loader)

• Initialisation sequence / boot software for the ATB
• First thing that boots
• Initialises the hardware
• Maintenance mode called the “standby mode”

• Patch, dump and check memory
• Flash unlock, erase and unlock

• Hardware self-tests (and diagnostics in boot report)
• Boot loader (loads ELF files from a simple flash memory file system)

7 January 2014

© The Terma Group 2013 12

Initialisation Sequence: Limitations

• The OBC in the ATB-RTB has limitations w.r.t. a real OBC
• No redundancy
• No reconfiguration module
• No relay configuration by HPC/ground
• No SGM
• Boot PROM and EEPROM in single FLASH memory.

• Consequently:
• Standby mode enabling using 2 conditions:

• Preferred: warm start and relay bit set by HPC
• Now: warm start and ‘s’ in UART B’s data register

• SGM writes and initialisation functions implemented as dummies in the BSP.
Called by the boot report functions.

• Redundant computer (which drives the standby mode) emulated by the OBC
Initialisation Converter tool.

7 January 2014

© The Terma Group 2013 13

The Initialisation Sequence: Design (1/3)

• Implementation languages
• Assembler

• Trap handlers
• CPU initialisation
• Mode detection (nominal or standby)
• Instruction cache test
• Memory test
• Stack initialisation

• C99 (requires a working stack for SPARCv8 SysV ABI
compliance)
• Boot reporting
• Other hardware tests (may contain inline assembler)
• File system code
• ELF loader/parser

• ESOC Emulator Test Harness Scripting Language
• White box unit test

• UNIX shell scripts
• Test harness (starting unit tests, handling test reports etc.)

7 January 2014

© The Terma Group 2013 14

Standby Mode

Languages

Standby Mode Application

The Initialisation Sequence: Design (2/3)

7 January 2014

Start CPU Init

Stack Init

RAM Test
Icache Test

Boot Report Init

Mode
Detect Stack Init

Write Icache and
RAM reports

Load Standby
App

Wait for TC

Handle TC

Execute Self-Tests
and Device Inits

Mount File System FSCK

Load Selected
ASW

Mount File System

ASW Takes
Over

C99

Asm

Nominal Mode

© The Terma Group 2013 15

Initialisation Sequence: Design (3/3)

• Initialisation sequence is independent from runtimes and operating systems
• Own implementations of everything needed by a C-compiler (e.g. memcpy) and

standard library needs (e.g. stdint.h, string.h etc.)
• Loads ELF-files

• Load information in the program headers of the ELF file
• Entry point in the ELF header

• Source organised for portability
• src/arch/sparc-v8 for specific common SPARC code
• src/bsp/gr-cpci-at697 for code specific for the board.

• Linker scripts
• One for including (defining locations of init sequence constants and addresses) by

ASW
• One for linking

• Build system
• Plain GNU make
• Very little to configure, just works

7 January 2014

© The Terma Group 2013 16

Initialisation sequence: Self Tests

• Power-On Self Tests for
• I-Cache (tags and lines)
• RAM:

• Address bus (often overlooked)
• Data bus (often overlooked)
• Content (including EDAC bits)

• D-Cache (tags and lines)
• Interrupt controllers (forced IRQs)
• UARTs (loopback)
• Timers (enable timer and check if IRQ taken)
• PCI interrupts (force PCI interrupts)
• Register EDAC (diagnostics)

7 January 2014

© The Terma Group 2013 17

Initialisation Sequence: File System (1/3)

• Virtual file system layer for boot software and one concrete file system
implementation:

• Virtual file system layer mounted in stack memory when system is
executing C-code.

• Supports
• Directories (read only)
• Files (read only)

• eboot_vnode_t represents anything in the file system (directories and
files).
• Pointer to virtual function table installed by the file system
• All node operations using a common interface are dispatched to the file

system implementation.
• eboot_mount(eboot_fs_t *fs, eboot_vnode_t *root): mount file system
• eboot_fsck(eboot_vnode_t *fsroot): File system consistency check / integrity

check
• eboot_file_t represents an open file, file operations inspired by POSIX

• eboot_open(eboot_vnode_t *vnode, eboot_file_t *file)
• eboot_read(eboot_file_t *file, void *dest, size_t len)
• eboot_lseek(eboot_file_t *file, eboot_off_t offset, int whence)
• eboot_close(eboot_file_t *file)

7 January 2014

© The Terma Group 2013 18

Initialisation Sequence: File System (2/3)

• Very simple file system in flash memory
• Does not support writes to files
• Does support:

• Multiple application binaries
• Standby application as separate app
• CRCs for file system consistency

• Layout
• Flash blocks are 256 KiB
• Boot SW installed in flash block 0
• File system root directory in flash block 1

• Directory and file CRCs (including boot sw and standby app)
• Number of files
• File info: CRC, size, location

• Metadata: CRCs for expanded ELF program loading segments

• Standby application in flash block 2
• ASW 1 in flash block [3, k]
• ASW 2 in flash block [k+1, m]

• Very easy to add additional file systems if needed

7 January 2014

© The Terma Group 2013 19

Initialisation Sequence: File System (3/3)

• Tool for generating the file system images implemented
• mkfs.eepromfs boot-sw.elf standby.elf asw1.elf asw2.elf

0x00040000 [corrupt]

• Hex value specify the address where the root directory tables should be placed
• Optional corrupt-command added for testing purposes, inverts all CRCs in the file

system
• Generates a binary file system image without the boot software (boot software is

linked to the FS image with a file entry though)
• Binary image is converted to SREC with objdump (automatically started by the tool)

7 January 2014

© The Terma Group 2013 20

The OBC init converter

• Connects the ESI Router to the GR-CPCI-AT697 board
• ESI router to OBC Init Converter connects using the EGSE libraries via TCP/IP
• OBC Init Converter connects to the GR CPCI board over via two serial cables

connected to the LEON2 UARTs.
• Simple ASCII based TM/TC protocol between the board and the converter.

• Patch
• Dump
• Crc
• Reset
• Enable / disable standby mode
• Flash memory lock, unlock and erase

• Written in Python 3
• MIB-database updated with additional TCs to reset the board, manage standby

mode and flash memories.

7 January 2014

© The Terma Group 2013 21

Initialisation Sequence: Testing and Validation

• Unit testing boot software not practical in traditional sense
• White box unit testing performed using the ESOC emulator test harness (EMTH).
• Emulates failed hardware by:

• Injecting unexpected characters on the UARTs
• Modifying the read values from registers and memory

• Validation tests executed on the board (without remote access)
• Load custom application software that prints messages on the UARTs (e.g. dumping the boot report)
• Start standby mode by writing ‘s’ to UART B
• Positive cases tested (i.e. no failing hardware, no way to really inject hardware errors in a predictable

way in the board).
• Performance test:

• Boot time without instruction caches enabled before the RAM test: ~120 seconds
• Boot time with instruction caches enabled before the RAM test: ~25 seconds

• Acceptance test plan based on full system
• SCOS in loop, using the board, using the init sequence
• Custom application software
• Focus on testing end user functionality:

• Activation of standby mode
• Dumping the boot report
• Selecting application software

7 January 2014

© The Terma Group 2013 22

Remote Access Demo Scenario

• Based on acceptance test scenarios:
• Execute a maintenance cycle (with flash memory) using the initialisation

sequence.
• Using the application software from the acceptance testing.
• Sequence:

• Program the board’s initial software
• Start boot software
• Startup SCOS, ESI router and converter
• Enable standby mode
• Unlock flash block
• Erase flash block
• Write patch value to flash block
• Select ASW 2
• Reboot
• Inspect memory modified by ASW 2 (using patch in flash memory)

• All steps executed from SCOS except initial programming of flash memory
and starting the boot software.

7 January 2014

© The Terma Group 2013 23

The Initialisation Sequence: Problems along the
way (1/2)
• UML as a tool for boot software (and operating systems)

• Sequence and activity diagrams are useful
• Remaining UML is hard to map to low level mostly sequential software
• Nothing that gains from object oriented design in boot software (except perhaps file system

support)
• Structured software engineering methods and tools for this type of software…

• Unit testing boot software / operating system kernels
• Not practical in the traditional sense, too much direct access to hardware

Solution: Unit tests are white box tests implemented as emulator scripts (Can fake hardware failures easily)
• Flash memory on the GR-CPCI-AT697

• Interleaved 2x16 bit flash chips:
• The CFI flash command 0x12:

• Per chip: 0x1200 (SPARC is big endian)
• Write both chips at once (is a must for erasing and writing): 0x12001200

• No documentation available (except the individual chip docs and the CFI standard from JDEC)
• Register EDAC selftest

• Implemented according to LEON2 documentation (did not work)
• CPU errata for the AT697 and the register EDAC diagnostics system (oops!)

7 January 2014

© The Terma Group 2013 24

The Initialisation Sequence: Problems along the
way (2/2)
• Bricked board

• At one point the board appeared to have become bricked (shortly before the CDR delivery)
• GRMON was unable to connect
• Problem: boot-sw was writing the MEMCFG registers early in the boot process and used

invalid values
 Workaround: push reset and break buttons at the same time, board then breaks before starting to execute
 instructions and GRMON can connect before the MEMCFG values are written

• GRMON does not support the uploading of blobs only ELF and SREC
• Used GNU objcopy to generate SRECs from the file system images.

• LEON2 / AT697 documentation for ASI instructions
• Very difficult to read and understand how to address the instruction and data caches with

diagnostic ASI access.
• sparc-elf-gcc (binary releases)

• 3.4.4 linker does not support the EXCLUDE_FILES linker script directive and does not
complain about it.

• 4.4.2 compiler does not run on some Linux versions due to dynamic linking to absent libraries.
• Mixed (unsupported) mode added to build system which can be enabled if needed: i.e. use

3.4.4 compiler and 4.4.2 linker (don’t use this mode for final builds)

7 January 2014

© The Terma Group 2013 25

THE ESOC EMU 2.0 IN THE ATB

7 January 2014

© The Terma Group 2013 26

Introduction: ESOC Emulator 2.0

• ESOC Emulator 2 is the evolution of the previous ESOC emulator.
• Drops the MIL-STD-1750A CPU support
• Adds LEON2 and LEON3 support

• High performance on the x86-64
• LEON2 runs in realtime
• Previous backends still around (MIPS, Alpha)

• The emulator is written in a CPU independent macro assembler
• Host specific backends generate the cores for the relevant target

• User/integrator is responsible for tailoring the emulator
• Exposing APIs to the simulators
• Defining I/O decoding mechanisms

• Common devices (e.g. LEON2 on chip registers) are emulated in the core
• Memory accesses to external devices are dispatched by target specific code.

7 January 2014

© The Terma Group 2013 27

ESOC Emulator in the ATB

• Integrated by implementing the TSIM API
• ATB/SVF is not 64 bit clean

• One crashing issue
• At least one silent problem that resulted in failures for the EagleEye integration tests

• ESOC Emulator 2.0 is very flexible
• Supporting the TSIM API (a foreign emulator’s API) is straight forward
• The other way around would be very hard

• TSIM API relies on string parsing
• Room for improvement…
• Easy to integrate new emulators by wrapping the API but one may loose functionality

or performance as the native emulator APIs may have other assumptions
• E.g. the ESOC emulator have facilities for integrating devices and address decoding of them in

the core.

7 January 2014

© The Terma Group 2013 28

SAVOIR Feedback

• Very clean set of requirements
• Programmers with the right knowledge can go from baseline requirements to an

implementation directly
• Possible improvements

• Instruction caches should be tested and enabled before the RAM test
• Code execution from PROM / Flash is slow.
• Speeds up boot times around 10 times, from 200 to 25 seconds

• Testing the instruction cache first appears to violate requirements with respect to
boot reporting

• Additional remarks in report
• OBC Initialisation Sequence and ATB Remote Access: Final Report

(terma/sdp/63/final/rep/1001)

7 January 2014

© The Terma Group 2013 29

Delivered Items

• User manuals:
• Remote Access
• EMU 2 TSIM API
• Initialisation sequence (and converter)

• UML model for boot software
• Software

• Boot Software Code
• mkfs tool code
• Unit tests

• Tailored ESOC emulator code
• TSIM API code for tailored emulator
• Converter tool code

• Updated MIB database
• Other documents

• Testing plans and procedures
• Testing reports

• ECSS-E-ST-40 quality documents
• TERMA C99 coding standard

7 January 2014

© 2013 Terma A/S 30 © The Terma Group 2013 30

Meet us at…

7 January 2014

 www.terma.com

 www.terma.dk/press/newsletter

 www.linkedin.com/company/terma-a-s

 www.twitter.com/terma_global

 www.youtube.com/user/TermaTV

http://www.terma.com/
http://www.terma.dk/press/newsletter
http://www.linkedin.com/company/terma-a-s
http://www.linkedin.com/company/terma-a-s
http://www.youtube.com/user/TermaTV
http://www.twitter.com/terma_global
http://www.youtube.com/user/TermaTV
http://www.youtube.com/user/TermaTV

	Slide Number 1
	Outline
	Introduction
	Slide Number 4
	Introduction: Remote Access
	Remote Access
	Remote Access
	Remote Access
	Slide Number 9
	Introduction: GR-CPCI-AT697
	Introduction: Initialisation Sequence
	Initialisation Sequence: Limitations
	The Initialisation Sequence: Design (1/3)
	The Initialisation Sequence: Design (2/3)
	Initialisation Sequence: Design (3/3)
	Initialisation sequence: Self Tests
	Initialisation Sequence: File System (1/3)
	Initialisation Sequence: File System (2/3)
	Initialisation Sequence: File System (3/3)
	The OBC init converter
	Initialisation Sequence: Testing and Validation
	Remote Access Demo Scenario
	The Initialisation Sequence: Problems along the way (1/2)
	The Initialisation Sequence: Problems along the way (2/2)
	Slide Number 25
	Introduction: ESOC Emulator 2.0
	ESOC Emulator in the ATB
	SAVOIR Feedback
	Delivered Items
	Meet us at…

