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• Introduction to the project 
• Remote Access to the Avionics Test Bench at ESTEC 
• The Initialisation Sequence and the OBC Initialisation Converter 
• The TSIM like interface to the ESOC Emulator 2.0 
• Feedback to SAVOIR 
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Introduction 

• SAVOIR group has been working on providing generic building blocks for 
reusable avionics. 

• Flight Computer Initialisation Sequence – ESA Requirements 
• Implement Initialisation sequence for the ATB 
• Feedback to SAVIOR for improving generic initialisation sequence requirements 

• ATB is installed at ESTEC Avionics Lab 
• Long colocations for contractors 
• Difficulties in getting support for problems with the board when e.g. the PM 

board is located at a contractor’s site. 
• Remote access with SCOS connecting to the ATB remotely via the Internet 

would help. 
• ATB in its SVF configuration supports multiple emulator cores 

• No support for running with ESOC Emulator 2.0 
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REMOTE ACCESS 
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• Currently SCOS2k is in the EGSE reference facility at ESTEC. 
• If SCOS2k would be moved outside ESTEC, situation would improve for 

contractors working with the system. 
• SCOS2k users can stay at home… 

Introduction: Remote Access 
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Remote Access 

• Easy setup for SCOS2k to connect to remote ESI Router: 
• Modify variables EGSE_EGW_SERVER and EGSE_EGW_SERVER_PORT on MISCconfig configuration 

file. 
• IP of CCS/SCOS must  be resolvable through reverse DNS. 

• VPN Software provided by ESTEC. 
• VPN Blocks all Other Network Connections 
• Run either with physical console or VM, not remote. 

• Terma used a local LAB to test the system 
• Simulated VPN connection (i.e. firewall blocking everything but relevant ports ) 
• Network reliability has been explored in local lab 

• Remote work normal scenario 
• Remote user configure CCS system for the external ESI router and port 
• User start ESTEC VPN software 
• CCS work can be carried as normal. 
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Remote Access 

• When using VPN, network reliability and latency could be an issue. 
• CCS checkout system has been designed for local connectivity with the router.  When CCS + 

VPN connection ends abnormally, human intervention may be need. 
 

• Problem scenario: 
• VPN is connected 
• CCS -> ESI connection established. 
• VPN is disconnected (ESI is not properly notified about disconnection). 
• CCS session is closed by user or unexpected failure. 
• VPN is re-established 
• New CCS -> ESI connection is tried 

• ESI router see a running connection and a trial from the same computer to reopen a running session. 
• Workaround: Script that scans ESI router log files for session lockups and tries to recover 

the situation without human intervention. 
• Sends close signal, to ensure ESI router terminates the TCP connection. 
• Allows reconnection afterwards. 

• Remember: With remote access the contractor does not have the ability to trouble shoot issues on 
the ESTEC side with e.g. the ESI router. 
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Remote Access 
• With remote access the contractor does not have the ability to trouble shoot 

issues on the ESTEC side with e.g. the ESI router. 
• Plausible problem: 

• Enable and disable commands are used in sequence 
• Disconnection occurs between 
• Disable command will either not be sent, or it will be delayed 
• Ensure the remote on-board-software have timed commands for critical functions that 

automatically disables themselves (e.g. fire thrusters in 20 seconds for 5 seconds). 
• VPN connection with ESTEC tested. 

• Acceptance tests with the initialisation sequence in the loop executed successfully 
over the VPN connection with ESTEC. 
• Enabling the initialisation sequence standby mode 
• Usage of initialisation sequence standby mode 
• Invalid telecommands 

• Further improvements would include 
• CCS and ESI have different timeouts that can be aligned. 
• Analyse CCS-ESI router protocols to ensure proper session handling (e.g. by 

providing usernames and passwords) 
• Safe-Killing switch for the remote platform to bring all hardware components on 

safe state. 
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THE OBC INITIALISATION SEQUENCE 
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Introduction: GR-CPCI-AT697 

• Compact PCI board with an AT697 LEON2 chip 
• 80 MHz 
• 128 MiB accessible SDRAM (SDRAM chips replaceable) 
• EDAC support for SDRAM 

• GRMON connects to the board via serial cable 
• Two serial ports routed to UART A and UART B on the AT697 chip. 
• Flash memory soldered to the board. Two 16 bit wide Intel flash chips following 

the JDEC CFI standard. 16 MiB flash memory total. 
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Introduction: Initialisation Sequence 

• Boot Software 
• First thing that executes 
• Similar to BIOS, EFI, UBOOT, OpenFirmware, etc.  
• Common features: 

• Hardware initialisation 
• Maintenance mode (e.g. command line for EFI and OpenFirmware, menu interface in 

many BIOSes) 
• POST: Power-On Self-Test 
• Boot loader (at least the first stage boot loader) 

• Initialisation sequence / boot software for the ATB 
• First thing that boots 
• Initialises the hardware 
• Maintenance mode called the “standby mode” 

• Patch, dump and check memory 
• Flash unlock, erase and unlock 

• Hardware self-tests (and diagnostics in boot report) 
• Boot loader (loads ELF files from a simple flash memory file system) 
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Initialisation Sequence: Limitations 

• The OBC in the ATB-RTB has limitations w.r.t. a real OBC 
• No redundancy 
• No reconfiguration module 
• No relay configuration by HPC/ground 
• No SGM 
• Boot PROM and EEPROM in single FLASH memory. 

• Consequently: 
• Standby mode enabling using 2 conditions: 

• Preferred: warm start and relay bit set by HPC 
• Now: warm start and ‘s’ in UART B’s data register 

• SGM writes and initialisation functions implemented as dummies in the BSP. 
Called by the boot report functions. 

• Redundant computer (which drives the standby mode) emulated by the OBC 
Initialisation Converter tool. 
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The Initialisation Sequence: Design (1/3) 

• Implementation languages 
• Assembler 

• Trap handlers 
• CPU initialisation 
• Mode detection (nominal or standby) 
• Instruction cache test 
• Memory test 
• Stack initialisation 

• C99 (requires a working stack for SPARCv8 SysV ABI 
compliance) 
• Boot reporting 
• Other hardware tests (may contain inline assembler) 
• File system code 
• ELF loader/parser 

• ESOC Emulator Test Harness Scripting Language 
• White box unit test 

• UNIX shell scripts 
• Test harness (starting unit tests, handling test reports etc.) 
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Standby Mode 

Languages 

Standby Mode Application 

The Initialisation Sequence: Design (2/3) 
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Initialisation Sequence: Design (3/3) 

• Initialisation sequence is independent from runtimes and operating systems 
• Own implementations of everything needed by a C-compiler (e.g. memcpy) and 

standard library needs (e.g. stdint.h, string.h etc.) 
• Loads ELF-files 

• Load information in the program headers of the ELF file 
• Entry point in the ELF header 

• Source organised for portability 
• src/arch/sparc-v8 for specific common SPARC code 
• src/bsp/gr-cpci-at697 for code specific for the board. 

• Linker scripts 
• One for including (defining locations of init sequence constants and addresses) by 

ASW 
• One for linking 

• Build system 
• Plain GNU make 
• Very little to configure, just works 
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Initialisation sequence: Self Tests 

• Power-On Self Tests for 
• I-Cache (tags and lines) 
• RAM: 

• Address bus (often overlooked) 
• Data bus (often overlooked) 
• Content (including EDAC bits) 

• D-Cache (tags and lines) 
• Interrupt controllers (forced IRQs) 
• UARTs (loopback) 
• Timers (enable timer and check if IRQ taken) 
• PCI interrupts (force PCI interrupts) 
• Register EDAC (diagnostics) 
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Initialisation Sequence: File System (1/3) 

• Virtual file system layer for boot software and one concrete file system 
implementation: 

• Virtual file system layer mounted in stack memory when system is 
executing C-code. 

• Supports 
• Directories (read only) 
• Files (read only) 

• eboot_vnode_t represents anything in the file system (directories and 
files). 
• Pointer to virtual function table installed by the file system 
• All node operations using a common interface are dispatched to the file 

system implementation. 
• eboot_mount(eboot_fs_t *fs, eboot_vnode_t *root): mount file system 
• eboot_fsck(eboot_vnode_t *fsroot): File system consistency check / integrity 

check 
• eboot_file_t represents an open file, file operations inspired by POSIX 

• eboot_open(eboot_vnode_t  *vnode, eboot_file_t *file) 
• eboot_read(eboot_file_t *file, void *dest, size_t len) 
• eboot_lseek(eboot_file_t *file, eboot_off_t offset, int whence) 
• eboot_close(eboot_file_t *file) 
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Initialisation Sequence: File System (2/3) 

• Very simple file system in flash memory 
• Does not support writes to files 
• Does support: 

• Multiple application binaries 
• Standby application as separate app 
• CRCs for file system consistency 

• Layout 
• Flash blocks are 256 KiB  
• Boot SW installed in flash block 0 
• File system root directory in flash block 1 

• Directory and file CRCs (including boot sw and standby app) 
• Number of files 
• File info: CRC, size, location 

• Metadata: CRCs for expanded ELF program loading segments 

• Standby application in flash block 2 
• ASW 1 in flash block [3, k] 
• ASW 2 in flash block [k+1, m] 

• Very easy to add additional file systems if needed 
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Initialisation Sequence: File System (3/3) 

• Tool for generating the file system images implemented 
• mkfs.eepromfs boot-sw.elf standby.elf asw1.elf asw2.elf 

0x00040000 [corrupt] 

• Hex value specify the address where the root directory tables should be placed 
• Optional corrupt-command added for testing purposes, inverts all CRCs in the file 

system 
• Generates a binary file system image without the boot software (boot software is 

linked to the FS image with a file entry though) 
• Binary image is converted to SREC with objdump (automatically started by the tool) 
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The OBC init converter 

• Connects the ESI Router to the GR-CPCI-AT697 board 
• ESI router to OBC Init Converter connects using the EGSE libraries via TCP/IP 
• OBC Init Converter connects to the GR CPCI board over via two serial cables 

connected to the LEON2 UARTs. 
• Simple ASCII based TM/TC protocol between the board and the converter. 

• Patch 
• Dump 
• Crc 
• Reset 
• Enable / disable standby mode 
• Flash memory lock, unlock and erase 

• Written in Python 3 
• MIB-database updated with additional TCs to reset the board, manage standby 

mode and flash memories. 
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Initialisation Sequence: Testing and Validation 

• Unit testing boot software not practical in traditional sense 
• White box unit testing performed using the ESOC emulator test harness (EMTH). 
• Emulates failed hardware by: 

• Injecting unexpected characters on the UARTs 
• Modifying the read values from registers and memory 

• Validation tests executed on the board (without remote access) 
• Load custom application software that prints messages on the UARTs (e.g. dumping the boot report) 
• Start standby mode by writing ‘s’ to UART B 
• Positive cases tested (i.e. no failing hardware, no way to really inject hardware errors in a predictable 

way in the board). 
• Performance test: 

• Boot time without instruction caches enabled before the RAM test: ~120 seconds 
• Boot time with instruction caches enabled before the RAM test: ~25 seconds 

• Acceptance test plan based on full system 
• SCOS in loop, using the board, using the init sequence 
• Custom application software 
• Focus on testing end user functionality: 

• Activation of standby mode 
• Dumping the boot report 
• Selecting application software 
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Remote Access Demo Scenario 

• Based on acceptance test scenarios: 
• Execute a maintenance cycle (with flash memory) using the initialisation 

sequence. 
• Using the application software from the acceptance testing. 
• Sequence: 

• Program the board’s initial software 
• Start boot software 
• Startup SCOS, ESI router and converter 
• Enable standby mode 
• Unlock flash block 
• Erase flash block 
• Write patch value to flash block 
• Select ASW 2 
• Reboot 
• Inspect memory modified by ASW 2 (using patch in flash memory) 

• All steps executed from SCOS except initial programming of flash memory 
and starting the boot software. 
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The Initialisation Sequence: Problems along the 
way (1/2) 
• UML as a tool for boot software (and operating systems) 

• Sequence and activity diagrams are useful 
• Remaining UML is hard to map to low level mostly sequential software 
• Nothing that gains from object oriented design in boot software (except perhaps file system 

support) 
• Structured software engineering methods and tools for this type of software… 

• Unit testing boot software / operating system kernels 
• Not practical in the traditional sense, too much direct access to hardware 

Solution: Unit tests are white box tests implemented as emulator scripts (Can fake hardware failures easily) 
• Flash memory on the GR-CPCI-AT697 

• Interleaved 2x16 bit flash chips: 
• The CFI flash command 0x12: 

• Per chip: 0x1200 (SPARC is big endian) 
• Write both chips at once (is a must for erasing and writing): 0x12001200 

• No documentation available (except the individual chip docs and the CFI standard from JDEC) 
• Register EDAC selftest 

• Implemented according to LEON2 documentation (did not work) 
• CPU errata for the AT697 and the register EDAC diagnostics system (oops!) 
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The Initialisation Sequence: Problems along the 
way (2/2) 
• Bricked board 

• At one point the board appeared to have become bricked (shortly before the CDR delivery) 
• GRMON was unable to connect 
• Problem: boot-sw was writing the MEMCFG registers early in the boot process and used 

invalid values 
 Workaround: push reset and break buttons at the same time, board then breaks before starting to execute 
 instructions and GRMON can connect before the MEMCFG values are written 

• GRMON does not support the uploading of blobs only ELF and SREC 
• Used GNU objcopy to generate SRECs from the file system images. 

• LEON2 / AT697 documentation for ASI instructions 
• Very difficult to read and understand how to address the instruction and data caches with 

diagnostic ASI access. 
• sparc-elf-gcc (binary releases) 

• 3.4.4 linker does not support the EXCLUDE_FILES linker script directive and does not 
complain about it. 

• 4.4.2 compiler does not run on some Linux versions due to dynamic linking to absent libraries. 
• Mixed (unsupported) mode added to build system which can be enabled if needed: i.e. use 

3.4.4 compiler and 4.4.2 linker (don’t use this mode for final builds) 
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THE ESOC EMU 2.0 IN THE ATB 
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Introduction: ESOC Emulator 2.0 

• ESOC Emulator 2 is the evolution of the previous ESOC emulator. 
• Drops the MIL-STD-1750A CPU support 
• Adds LEON2 and LEON3 support 

• High performance on the x86-64 
• LEON2 runs in realtime 
• Previous backends still around (MIPS, Alpha) 

• The emulator is written in a CPU independent macro assembler 
• Host specific backends generate the cores for the relevant target 

• User/integrator is responsible for tailoring the emulator 
• Exposing APIs to the simulators 
• Defining I/O decoding mechanisms 

• Common devices (e.g. LEON2 on chip registers) are emulated in the core 
• Memory accesses to external devices are dispatched by target specific code. 
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ESOC Emulator in the ATB 

• Integrated by implementing the TSIM API 
• ATB/SVF is not 64 bit clean 

• One crashing issue 
• At least one silent problem that resulted in failures for the EagleEye integration tests 

• ESOC Emulator 2.0 is very flexible 
• Supporting the TSIM API (a foreign emulator’s API) is straight forward 
• The other way around would be very hard 

• TSIM API relies on string parsing 
• Room for improvement… 
• Easy to integrate new emulators by wrapping the API but one may loose functionality 

or performance as the native emulator APIs may have other assumptions 
• E.g. the ESOC emulator have facilities for integrating devices and address decoding of them in 

the core. 
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SAVOIR Feedback 

• Very clean set of requirements 
• Programmers with the right knowledge can go from baseline requirements to an 

implementation directly 
• Possible improvements 

• Instruction caches should be tested and enabled before the RAM test 
• Code execution from PROM / Flash is slow. 
• Speeds up boot times around 10 times, from 200 to 25 seconds 

• Testing the instruction cache first appears to violate requirements with respect to 
boot reporting 

• Additional remarks in report 
• OBC Initialisation Sequence and ATB Remote Access: Final Report 

(terma/sdp/63/final/rep/1001) 
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Delivered Items 

• User manuals: 
• Remote Access 
• EMU 2 TSIM API 
• Initialisation sequence (and converter) 

• UML model for boot software 
• Software 

• Boot Software Code 
• mkfs tool code 
• Unit tests 

• Tailored ESOC emulator code 
• TSIM API code for tailored emulator 
• Converter tool code 

• Updated MIB database 
• Other documents 

• Testing plans and procedures 
• Testing reports 

• ECSS-E-ST-40 quality documents 
• TERMA C99 coding standard 
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Meet us at… 
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