
→

Multi Agent System
for

Autonomy
in

Testing and Verification

Final Presentation

11/12/2013

Quirien Wijnands
ESA/ESTEC – TEC-SWG

Outline

• Some history
• MASATV

• Study Objectives and Tasks
• Software Quality
• The MASATV Test Process
• The Demonstrator

• Conclusions
• Questions

Some History

• In recent past, 2 parallel studies were done on distributed agents for
space autonomy (DAFA) to demonstrate the advantages of using
Distributed Agents in Space:
 To demonstrate that it can be applied.
 To identify an appropriate methodology for system design of

agent-based systems.
 To demonstrate the added value by applying a MAS-autonomy

framework in a reference scenario.
 In this respect:

 Mission/System level including Ground and Space Segment
 Mainly focused at operational phases.

DAFA History (1/2)

• The DAFA tasks:
 Survey of use of autonomy in space missions
 Determination of performance parameters for measuring eventual

improvements.
 Survey of existing Agent Frameworks for development and

execution.
 Design of MAS for different suitable mission scenarios.
 Demonstrator and comparison

DAFA History (2/2)

Identified Use Cases in areas of:
• Planning and Scheduling
• Data Handling
• GNC
• Monitoring and Recovery

• In these studies an agent is defined as:
• a stand-alone software entity,
• defined in terms of behaviours,
• which is capable of acting with a certain degree of intelligence

and autonomy in order to accomplish tasks.

 In its simplest form agents can be seen as traditional software functions or
programs.

 However agents usually are more complex and exhibit rational behaviour
such as to “maximise expected outcome”.

 This definition can include concepts like persistency, autonomy, social ability
and reactivity and proactivity (including capabilities like adaptation to the
environment and learning).

 A single agent can be used to accomplish a single task but more interesting are
systems in which a number of agents are interacting with each other (a Multi
Agent System (MAS)), and as such demonstrate overall intelligence
(autonomy and automation).

Agent: one definition

MASATV
Study Objectives

• Application of MAS into the S/W engineering process.
• Problem area: Software Systems’ Testing and Verification:

• Major phase in S/W development life-cycle (often underestimated).
• Time Consuming but also often under time pressure.
• Elaborate, multi-domain, multi-level and complex.
• Expensive to cover ALL s/w requirements and exclude ALL error

sources.
• Manpower allocation (type of tester vs. need for knowledge).

• Possible Solution: Multi-Agent System for bringing intelligence
and automation to the Testing and Verification process (e.g. Test
sequence optimalisation or failure diagnosis)

• Objective: Definition, Development and Demonstration of a MAS
bringing Autonomy to the Testing and Verification phase of a Software
Product.

MASATV: Objectives

• Task 1: Analysis and identification of types
of software tests and corresponding
procedures most suitable for being
supported.

• Task 2: Definition of knowledge-base and
Ontology.

• Task 3: MASTV design using the “JADE”
methodology.

• Task 4: Implementation of the rule-based
behaviours of the Agents of the MASTV.

• Task 5: Demonstration by testing a simple
Equipment Model Simulation Model.

MASATV: Original Main Tasks

(non-orthogonal)
Test Qualifications

MASATV

Software Quality
(results of Task 1)

• First we had to make some steps back:
• The definition of Software Quality states that it’s a characteristic of

a product to have the capability to satisfy needs which are either
stated needs or implied needs [ISO 8402].

• Stated needs:
• Documented functional or performance requirements
• Documented development standards

• Implied needs:
• Expected characteristics but rarely documented.

Software Quality (1/4)

• Software Quality Models: a way to
define, understand and measure !!!
software quality.

Software Quality Model:
Characteristics and
Sub-Characteristics
[ISO/IEC 9126]

• E.g: Functionality Characteristic: For a software function or module
to be high in quality aspects, it should be well satisfying functional
requirements. It should perform its implied needs or stated needs.
Functionality characteristic is one of the most important high-level
characteristics. It contains the following sub-characteristics:
 Suitability (how software functions comply to the services it

needs to performs)
 Accuracy (matching results versus reference results)
 Security (how secure from misuse)
 Interoperability (interfacing to other systems)

Software Quality (2/4)

Software Quality:
Characteristics and
Sub-Characteristics
[ISO/IEC 9126]

• Metrics: Needed for evaluation of each Sub-Characteristic.

Software Quality (3/4)

Functionality
Characteristics

Metrics Formula/Rules/Logic References

Suitability (S) • Percentage of
completed
requirement (S1)

• Accuracy result
(S2)

• Test coverage of
requirement (S3)

• Test coverage of
software modules
(S4)

S1 = completed requirement / total number requirement
The closer the S1 value is to 1, the better it is

S2 = Accuracy (calculated below)
The closer the S2 value is to 1, the better it is

S3 = Sum of all requirements covered* / total number of
requirement.
The closer the S3 value is to 1, the better it is

S4 = Sum of all software modules covered** / total no.
of software modules.
The closer the S4 value is to 1, the better it is.

*Requirement covered R1= no. of test case passed for
R1/total no. of test cases for R1

**Software modules covered (1/0)= if there is a
requirement which tests SM then its value is 1 else 0

[BF09]
[ISTQB]

Metrics for
Characteristic: Functionality
Sub-Characteristic: Suitability

• Steps to follow:
1. Identify Characteristics and Sub-characteristics of interest

(depending on project information)
2. Chose metrics (for evaluation of the Sub-Characteristics)
3. Chose the Evaluation Method and values for the metrics

(formula, fuzzy logic, …)
4. Combine values to get quality of the characteristic and put

into matrix
5. Determine the rules for the quality evaluation

Software Quality (4/4)

General model to
evaluate software
quality [Balz98]

MASATV

The identified
Test Process

(results of Task 2 and 3)

Test Process:
possibilities for support by MASTV

MASATV
demonstrator

Possibly
supported by

Test Automation

Resulting demonstrator
Capabilities:

Test Process and MASTV
Main Functionalities

Compensation of changes

since last test run
Improvement of

Test Quality

Information coming from design (not determined by MASATV)
Collected and aggregated by MASATV
Determined by MASATV

Test Process and MASTV
Information: The Test Space

Functionality 1

Functionality Reliability Efficiency

Test space

Software Quality

Non-functional
Requirement 1

Non-functional
Requirement 2

Functional
Requirement 1

Functionality 2

Functionality 3

Functional
Requirement 2

Functional
Requirement 3

Conformance to additonal
non-functional
Requirements

Non-functional
Requirement 3

Non-functional
Requirement 3

Functional
Requirement 1

Test Object

Test Objective

Module 2

Module 1

Functionalities derived from requirements which are to be tested
Requirements (functional and non-functional)
Software Quality aspects as defined in ISO/IEC 9126
Additional test objectives that are not contained within ISO/IEC 9126

MASTV Test Process

Test Objectives

Test Process and MASTV
Information: The Test Importance

MASTV Test Process

Functionality 1

Functionality Reliability Efficiency

Functionality 2

Functionality 3

Conformance to additonal
non-functional
Requirements

1.0

0.8 0.0 1.0

0.8 0.0

1.0 0.6 0.0

0.0

0.9

0.2

• Contains the importance of every quality aspect for every functionality
• Is determined during the Design Process and immediately captured

Test Process and MASTV
Information: The Test Coverage

MASTV Test Process

• Assigns a test-case (TC) to one or several places in the Test Space.
• Contains the information which Test Case is testing which quality

aspect of which functionality.
• Assignment is given by Test Engineer

Functionality 1

Functionality Reliability Efficiency

Functionality 2

Functionality 3

Conformance to additonal
non-functional
Requirements

TC 1 TC 2

TC 3

TC 1 TC 4

TC 3

TC 3

TC 5

TC 6

TC 6

TC 7TC 6

Test Process and MASTV
Resulting: The Software Quality Matrix

MASTV Test Process

• The Software Quality gives the actual quality of functionalities
• The Quality determination is the result of the combination of the

previous matrices.

Functionality 1

Functionality Reliability Efficiency

Functionality 2

Functionality 3

Conformance to additonal
non-functional
Requirements

Test Process and MASTV
Integration of different levels of Test Scope

• For every test level, the Test Space can be generated and evaluated.
• The test levels depend on each other.
• In particular resulting data from lower levels is considered in higher

levels

“traditional” Test Scope:
• System Tests
• Integration Tests
• Unit Tests

MASATV

The Demonstrator
(results of Task 4 and 5)

MASTV
MAS Architecture

MASATV: different types of agents
for different roles

MASTV
The Implemented Prototype (1/3)

• Implementation in Eclipse using JAVA and using the JADE Agent
Framework:
 Functionality Agent: 7 behaviours, 418 LOC
 System Agent: 5 behaviours, 467 LOC
 TestCase Agent:8 behaviours, 485 LOC
 TestToolAgent: 10 behaviours, 658 LOC

JADE execution environment

JADE sniffer and inter-agent
messages

MASTV
The Implemented Prototype (2/3)

GUI on top of
the System Agent

MASATV prototype information data file:
defining which SW functionality is tested by which TC for which Quality Characteristic

MASTV
The Implemented Prototype (3/3)

Resulting Quality Matrix
for the Simulation Model

Resulting Test Cases
Prioritization Result

MASATV

Conclusions

Conclusions

• An Agent-supported Test Process has been defined based on
Software Quality, using Characteristics, sub-Characteristics and
(configurable) Metrics.

• In the implementation of the demonstrator use is made of Agents for:
o Mastering the Complexity
 Solving complex tasks by distributing them to different agents

(for which each can be relatively simple).
 By cooperation of different Agents the task is solved.
 The Agent Knowledge base is populated by human knowledge

and experience.
o Its “easy” Expandability, by adding new (relatively simple)

Agents. In this respect the quality of the Ontology is important.
o Allowing integration of distributed information sources and

classic CASE tooling.

Outlook

• Merging with ECSS S/W development standard.
• Which type of data is available at which moment and is coming from

which entity.
• The format here is less important

• Collaboration/Integration with other used tooling

agents

MASATV

Questions?

For more information please contact:
quirien.wijnands@esa.int

MASTV
The used Ontology

MASATV: Ontology for exchange of
information

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32

