ARIETIS-NS: Preliminary qualification results of an innovative 3-Axis Space Rad-Tolerant Gyro

A. Torasso, R. Diram, InnaLabs Ltd

ADCSS 2022
26/10/2022
InnaLabs Company History Timelines

2011
Oct 2011 InnaLabs Limited is formed

2012
New Factory opens in Aug 2012 in Dublin

2014
New Gyro Technology Released. First CVG gyros are available to the market

2016
Q Flex Accelerometer family released to the market

2018
Technology selected by ESA for Space development contracts

2020
ESA and European Primes support next generation Space Gyroscopes

2021
Innalabs wins contract to deliver gyros for several missions: HERA, PLATO, LSTM & ARIEL

2022 / 25
Strategic PLAN to move up the value chain by developing Inertial Systems IMU using our own SMART sensors
InnaLabs Manufacturing Capabilities

- 6.000 m² of production area
- Clean Rooms
 - ISO – Class 7
 - ISO - Class 5
- Latest state of the art Equipment
 - Rate Tables
 - Temperature Chambers
 - Shakers
 - High Precision Soldering, Welding and Etching Laser Machines
- Production Capacity
 - Gyroscopes – 1000 axes/month
 - Accelerometers – 850 units/month
InnaLabs gyro have already accumulated >2,500,000 hours in flight
ARIETIS: Rad-Hard
ARIETIS-NS: upscreened COTS
CVG-NS: full COTS solution

InnaLabs accelerometers are TRL9 in launchers.
Rad-Hard version being developed

IMU for space applications being developed
InnaLabs CVG Space Heritage

2016

COTS CVG gyro in LEO, >2,500,000hr in space since 2016 (19 satellites, 76 × 1-axis gyros, 500km SSO)

2018

CVG sensor used in 3rd party GEO/MEO product (now TRL9, 1st launch in 2022)

2021

Contract to develop the ARIETIS Rad-Hard Space Gyro and ARIETIS-NS Rad-Tolerant Space Gyro by ESA.

ARIETIS-NS selected by several customers and EM delivered.

ARIETIS-NS CDR closeout and Qualification Testing

2022
InnaLabs Coriolis Vibratory Gyroscope

- Initially developed in the early 2010 and used across all InnaLabs gyro references since, InnaLabs CVG is based on an axisymmetric resonator made of high-quality metal.

- Mode 1 and mode 2 are operated by means of 8 piezo elements.

- The nature of the technology, i.e. a metal resonator that needs to operate in vacuum conditions to have the needed Q factor, makes CVG ideal for space applications. No issue with radiations, no moving parts, robust to high shock and vibration environment.
InnaLabs CVG element evolution

<table>
<thead>
<tr>
<th></th>
<th>CVG-1</th>
<th>CVG-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Ø 65 mm x 25 mm</td>
<td>Ø 45 mm x 25 mm</td>
</tr>
<tr>
<td>Mass</td>
<td>100 grams</td>
<td>65 grams</td>
</tr>
<tr>
<td>Damper</td>
<td>External damper flange</td>
<td>Integrated damper</td>
</tr>
<tr>
<td>Magnetic susceptibility</td>
<td>< 5 °/hr/G</td>
<td>< 1°/hr/G</td>
</tr>
<tr>
<td>Qualification</td>
<td>Product qualification for land application</td>
<td>Space qualification (ECSS standards) for product, process and parts</td>
</tr>
</tbody>
</table>
Arietis-NS design approach

• 3 axis non redundant **rad-tolerant** medium to high performance gyroscope
 • In terms of performance covers the vast majority of space applications.

• Sensing elements operated through **digital control loops** implemented in FPGAs (contrary to analogue design for other Innalabs products)
 • Use of FPGA allows for new functionalities not present in other Innalabs gyros, including Scale Factor Self Calibration (SFSC)

• **Up screened COTS EEE** parts selected by means of Radiation Lot Acceptance Tests, both Total Ionising Dose (TID) and Single Event Effects (SEE)
 • With the same electronics, two different versions LEO and GEO are created

• **Simplified Functional architecture** simplified with only one operation mode after power
 • Shares functional architecture with ARIETIS, rad-hard space qualified gyro

• Designed for **high production rate**
ARIETIS-NS Specification

<table>
<thead>
<tr>
<th>INTERFACE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TM/TC user interface</td>
<td>RS422 (transmitter only or bidirectional) or RS485 redundant TM output rate up to 500Hz</td>
</tr>
<tr>
<td>Ground test interface</td>
<td>RS422 receiver only – not redundant</td>
</tr>
<tr>
<td>Power Input</td>
<td>28V (regulated or unregulated) - not redundant.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENVIRONMENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualification Temperature Range</td>
<td>[-25°C; +65°C]</td>
</tr>
<tr>
<td>Sine vibration level</td>
<td>26.25g</td>
</tr>
<tr>
<td>Random vibration level</td>
<td>18.3 g<sub>rms</sub></td>
</tr>
<tr>
<td>Shock</td>
<td>1500g @ 1500Hz</td>
</tr>
<tr>
<td>Radiation</td>
<td>Mostly COTS EEE screened to:</td>
</tr>
<tr>
<td></td>
<td>• 30krad TID</td>
</tr>
<tr>
<td></td>
<td>• SEL free till 60MeV.cm<sup>2</sup>.mg<sup>-1</sup></td>
</tr>
<tr>
<td></td>
<td>• SET behaviour characterised.</td>
</tr>
</tbody>
</table>
ARIETIS-NS Specification

PERFORMANCES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
<td>[-12°/s; +12°/s]</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>5 Hz (for low dynamic mission)</td>
</tr>
<tr>
<td></td>
<td>155 Hz (for very dynamic missions)</td>
</tr>
<tr>
<td>ARW</td>
<td><0.005 °/√h</td>
</tr>
<tr>
<td>Bias instability</td>
<td>< 0.1 °/hr</td>
</tr>
<tr>
<td>Bias - BOL</td>
<td>< 10 °/h (3σ)</td>
</tr>
<tr>
<td>SF stability EOL</td>
<td>3000 ppm (3σ) with SFSC</td>
</tr>
<tr>
<td></td>
<td>3% (3σ) without SFSC</td>
</tr>
<tr>
<td>Magnetic sensitivity</td>
<td>1°/h/Gauss (up to 15 Gauss)</td>
</tr>
<tr>
<td>Reliability</td>
<td>1000 FIT (FIDES)</td>
</tr>
<tr>
<td>Life</td>
<td>Up to 6 years on ground and 16 years in flight</td>
</tr>
</tbody>
</table>

BUDGETS

<table>
<thead>
<tr>
<th>Budget</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>1.3 kg (LEO - 2mm thick housing)</td>
</tr>
<tr>
<td></td>
<td>2.3 kg (GEO - 8mm thick housing)</td>
</tr>
<tr>
<td>Envelop</td>
<td>130 x 130 x 65 mm (LEO - 2mm thick housing)</td>
</tr>
<tr>
<td></td>
<td>142 x 142 x 73 mm (GEO - 8mm thick housing)</td>
</tr>
<tr>
<td>Power consumption</td>
<td>< 6W</td>
</tr>
</tbody>
</table>
Arietis-NS internal structure

- **FPGA1**
- **FPGA2**
- **PB**
- **CLDB**
- **SE**
 - **X axis SE**
 - **Y axis SE**
 - **Z axis SE**
- **IFB**
- **PSB**

CLDB: Control loop digital board
PB: Proximity board
PSB: Power supply board
IFB: Interface Board

SE: Sensing element
Arietis-NS functional diagram

InnaLabs® Proprietary

12
Qualification testing

- Standard ECSS campaign performed.
- 3 different unit with different configurations (LEO, GEO, different data outputs)
- Life test will be performed at the end of the typical ECSS campaign
Qualification testing - mechanical

Sine Vibration: 26.25 g

Random Vibration: 18.3 g_{RMS} perpendicular
9.5 g_{RMS} parallel
Qualification testing - mechanical

- Performance test (mechanical env.)
- Performance test (thermal vacuum)
- Performance test (EMC)
- Performance test (life test (thermal cycling))

Shock: 1500g @ 1500 Hz SRS
Qualification testing - TVAC

Performance test
Mechanical env.
Performance test
Thermal vacuum
EMC
Performance test
Life test (thermal cycling)
Performance test
Noise measurement

- Based on a 12hrs static measurement on a marble at ambient condition (temperature not controlled)

- **Average angular random walk** below \(0.003 \, ^\circ/\sqrt{\text{hr}}\) with a minimum of \(0.0015 \, ^\circ/\sqrt{\text{hr}}\)

- **Average bias instability** is \(0.067 \, ^\circ/\text{hr}\) with a minimum at \(0.04 \, ^\circ/\text{hr}\)
Bias stability over temperature & with mechanical environment

- Bias is measured over -10/60°C temperature range with 5°C/hr ramps and 4 hours dwell time

- Average bias stability over temperature is below 3 °/hr (1σ). After mechanical environment, the absolute bias is drifting by 5 °/hr on average but the stability over temperature remains very close from the initial
• Scale Factor Self Calibration (SFSC) is a new patented feature allowed by the digital control loops

• Consists in electromechanical gains measurement on the secondary mode through the injection of a stimuli

• Improve the scale factor error stability over temperature and over time by a factor of at least 10x

• For example, on EQMs (see figure on the right), the scale factor stability is around 200 ppm (1σ) with the SFSC and 3000ppm (1σ) without SFSC
Conclusion

- Innalabs has demonstrated the capability of achieving a fully digital space CVG based gyro design.

- ARIETIS-NS design is now frozen, engineering models released, qualification ongoing and flight model currently being built.

- Several configurations have been created to meet various mission profiles.

- All tests (on Engineering Models and Qualification Models) show that the gyro meet specification, in certain cases with significant margins.

- ARIETIS-NS has already been selected for telecom, earth observation, science and exploration missions (including ESA HERA mission). Customers span Europe, North America, Asia.

- Thanks to the European Space Agency and Enterprise Ireland for the support in the development and qualification of ARIETIS-NS.