

Microchip Processing Solutions for Space

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Nicolas GANRY

27th October 2022

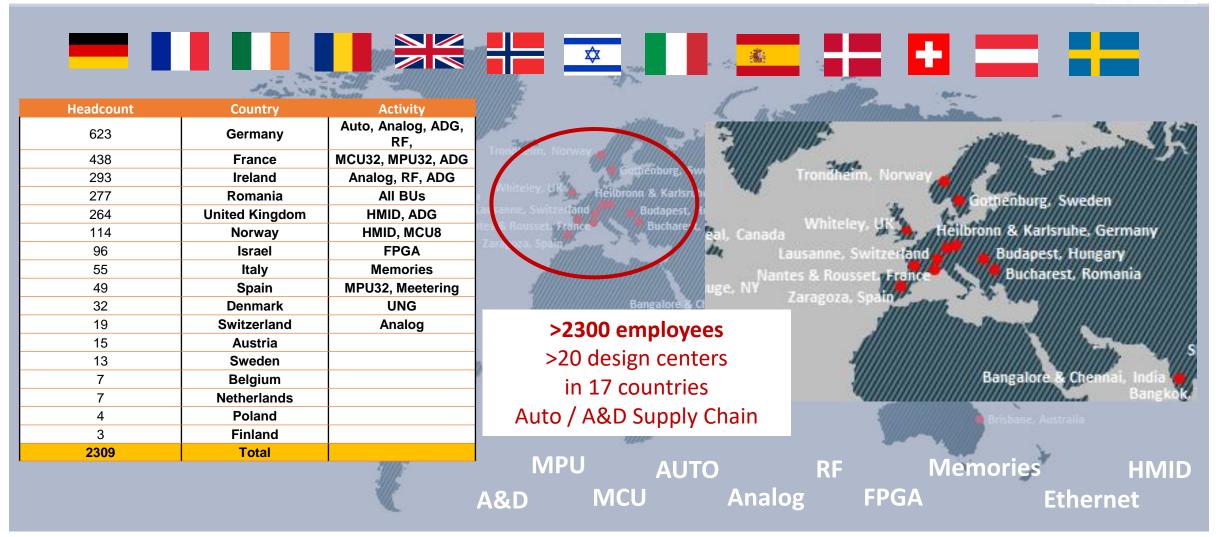
Microchip Space Processing Solutions

- Microchip in Europe
- Space processing applications
- Space Microchip solutions available
- High processing solutions initiatives
 - RISC-V Polarfire[®] SoC
 - Arm® Multicore MPU
 - HPSC

Microchip Space Processing Solutions

- Microchip in Europe
- Space processing applications
- Space Microchip solutions available
- High processing solutions initiatives
 - RISC-V Polarfire[®] SoC
 - Arm® Multicore MPU
 - HPSC

Microchip's Broad Portfolio & Market Coverage

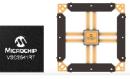

High-Rel Enterprise Power Switches & **MCUs FPGA Mixed Signal** Memory Analog Interface Storage Management Controllers Discrete Industrial **Automotive** Consumer **Communications Data Center & Computing** A&D 18% 28% 15% 13% 14% 12% 9 f 7 0

1 Semiconductor Supplier in Aerospace and Defense

Microchip in Europe



Largest Space Semiconductors Portfolio


MPUs and MCUs

8-bit AVR®
32-bit SPARC V8 and arm M3 & M7
GNSS SoC

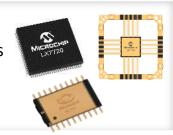
Communication Interface and memories

SpaceWire, Ethernet, CAN SRAM NVM memories

FPGAs

RT PolarFire® RTG4™ RT ProASIC3® RTAX™, RTSX-SU

Power Solutions


Rad-hard JANS Diodes, Bi-Polar Small Signal Transistors
Rad-hard Isolated DC-DC Converter Modules
Custom Power Supplies 2 W to > 5 KW

Point of Load Hybrid Solutions Electromechanical Relays

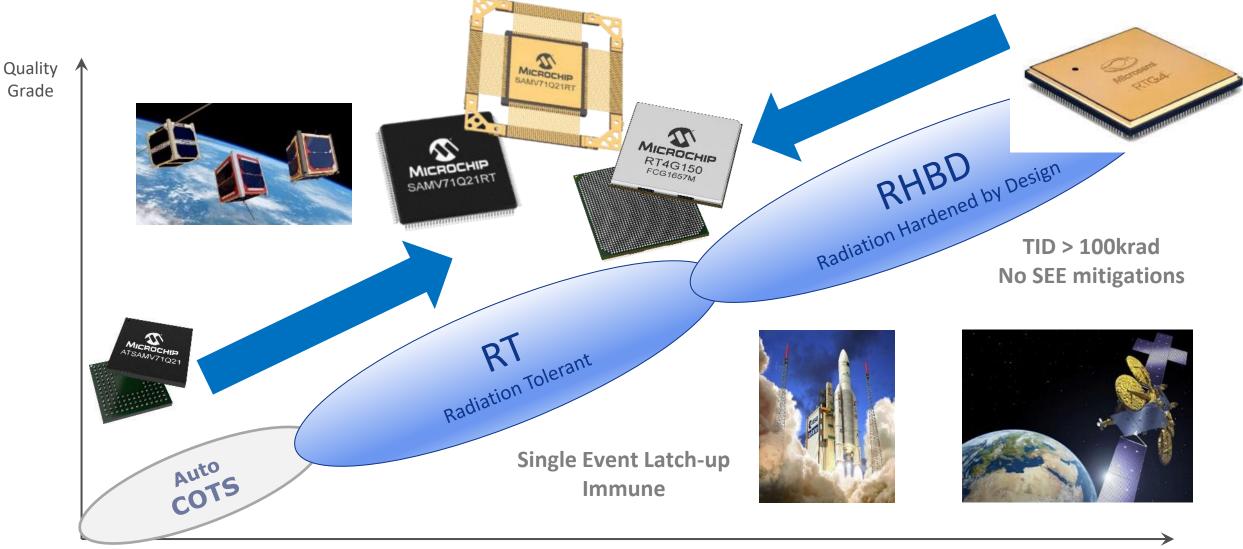
Mixed Signal Integrated Circuits

Telemetry and Motor Control Space System Managers Power Supply protection

RF Products

Packaged and Chip Si and GaAs RF Diodes, SAW filters,

Packaged and bare die GaN and GaAs MMICs
GaN on SiC HEMT transistors


Timing solutions and Oscillators

Ovenized Quartz Oscillators
Hybrid Voltage Controlled and
Temperature Compensated Crystal Oscillators
Cesium Clocks
Chip Scale Atomic Clock (CSAC)

Microchip Scalable Solutions for Space

Radiation performances

Microchip Space Processing Solutions

- Microchip in Europe
- Space processing applications
- Space Microchip solutions available
- High processing solutions initiatives
 - RISC-V Polarfire[®] SoC
 - Arm® Multicore MPU
 - HPSC

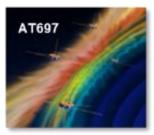
Processing: An Unrivalled Flight Heritage

Colombus 2008

Proba2 2009

JUNO (Nasa) 2011

SPOT6 2012

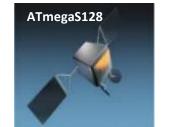

Gaïa 2013

Sentinels & Alphasat 2013

SVOM/Eclair 2013

MMS (Nasa) 2014

Exomars 2016


Solar Obiter 2017

Bepi-Colombo 2018

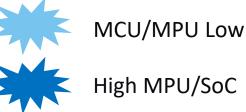
Perseverance 2021

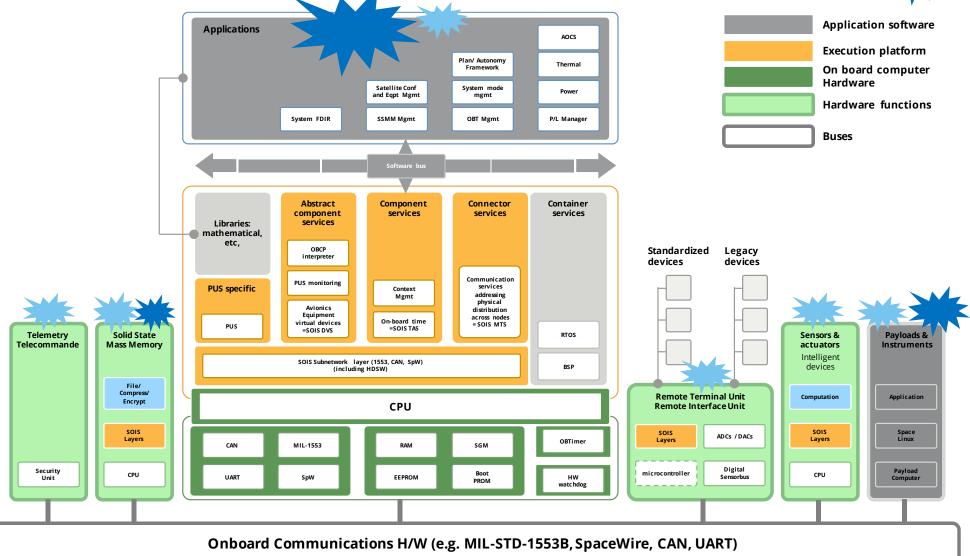
Mega Constellation

LEO Sat -2019

Thousands of flight models delivered worldwide

Capella Sequoia Earth Obs 2020




ANGELS nanosat

2020 MICROCHIP

Processing* for Space

Typical System Architecture

Typical Processing Space Applications

High MPU/SoC

- On board computer
- Flight computing
- Rich OS applications
- Image processing
- AI/ML
- Data handling
- Transponders
- Processing payloads
- Radar/SAR
- Datapath cryto
- Mass data and memory
- Navigation
- Decommissioning
- Interconnect / switches
- •

Low MPU/MCU

- Remote Terminal Units (RTUs)
- Motor control
- Mixed signal processing
- Propulsion system control
- Sensor / actuator control
- Robotics applications
- Mechanisms and motor control
- Magnetometer
- Reaction wheels
- Star tracker
- Power control
- OBC for nanosatellites
- Connectivity gateway
- Security gateway
- Thermal control
- ...

Microchip Space Processing Solutions

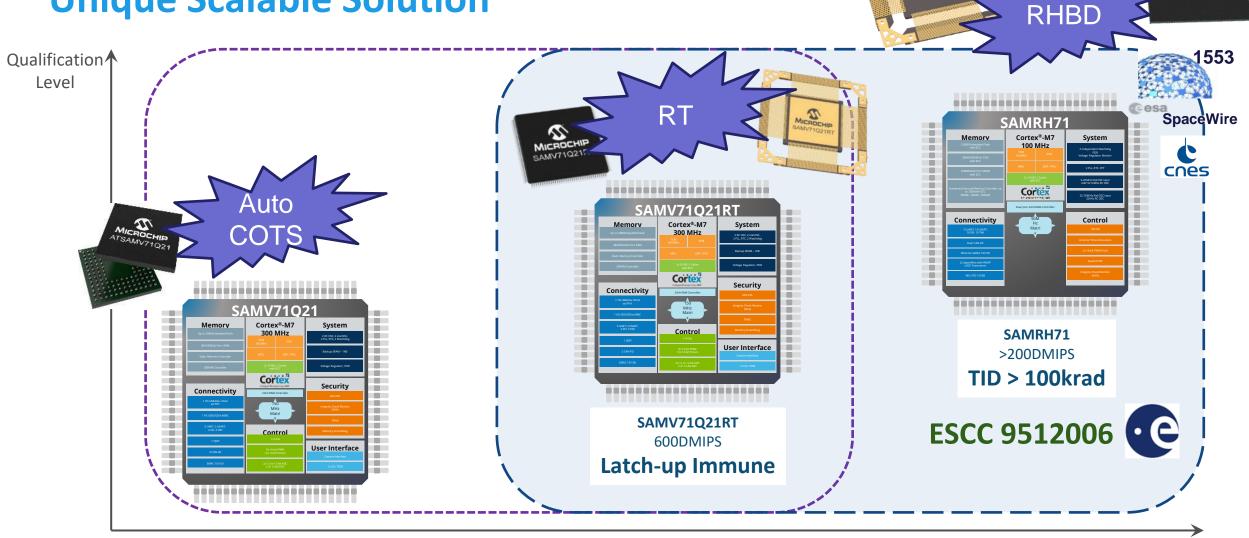
- Microchip in Europe
- Space processing applications
- Space Microchip solutions available
- High processing solutions initiatives
 - RISC-V Polarfire[®] SoC
 - Arm® Multicore MPU
 - HPSC

Space Microcontroller and Processors

COTS Radiations-Tolerant

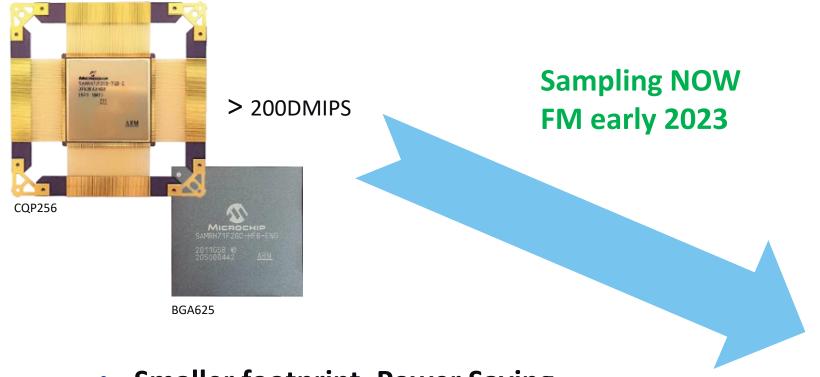
Products	Туре	Summary / Highlights	Flight Models
ATmegaS128	AVR8	~10 DMIPS, SPI,TWI, UART, ADC	Available
ATmegaS64M1	AVR8	~10 DMIPS, CAN, DAC and Motor Control	Available
SAMV71Q21RT	ARM32 M7	600 DMIPS, CAN FD, Ethernet TSN, DSP	Available
SAM3X8ERT	ARM32 M3	100 DMIPS, CAN, Ethernet, Dual CAN	Available

Rad Hard by Design


Products	RH Tech	Summary / Highlights	Flight Models
AT697F	180nm	SPARC V8 100MHz,FPU/UART/PCI	Available
AT7913	180nm	SPARC V8 50MHz, Spw/CAN/SRAM 64K	Available
AT7991	180nm	SPARC V8, GNSS Control Spw/CAN/1553	Available
SAMRH71	150nm Mixed	Arm Cortex-M7, >200 DMIPS Spw/1553/CAN FD/Eth, TCM/FPU/MPU/ECC	Available
SAMRH707 "Jaguar"	150nm Mixed	Arm Cortex-M7, 100 DMIPS Spw/1553/CAN FD, ADC/DAC, NVM+, small package	Samples available FM early 2023

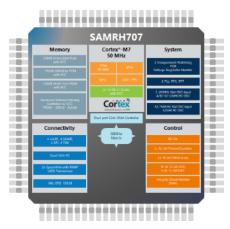
Arm® M7 SoC => COTS to RHBD

Unique Scalable Solution


Radiations performances

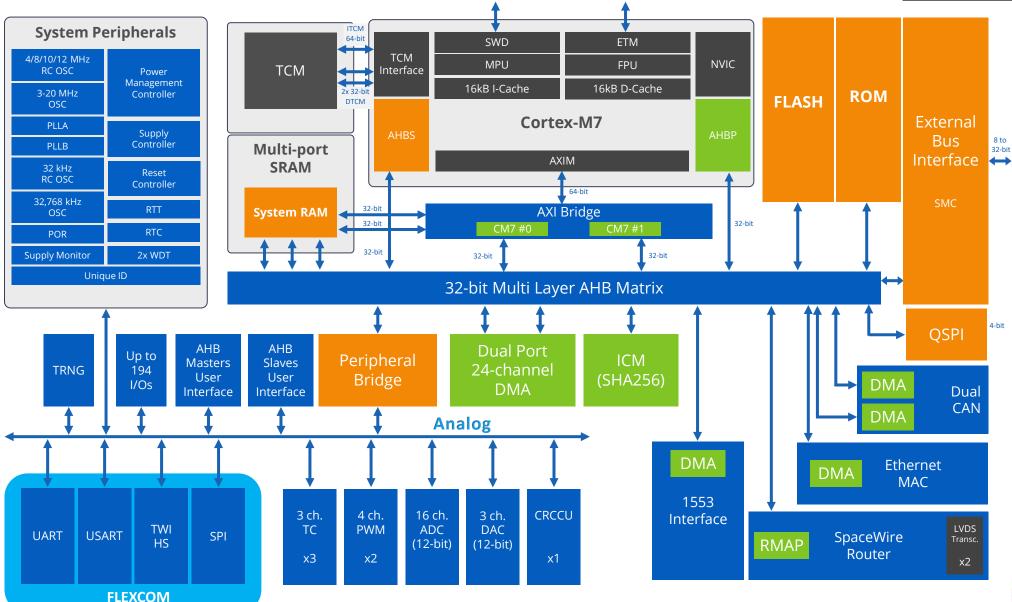
MICROCHIP

SAMRH707 - Rad-Hard Microcontroller



- Smaller footprint, Power Saving
- Embedded Analog ADC/DAC 12-bits
- Enhanced embedded NVM 50Krad
- Still integrating LVDS

- 128KB Flash
- **320KB SRAM**
- (192KB TCM)
- Int/Ext Mem



- CQFP 164
 - **BGA 484**
- 100 DMIPS
- 200Mb/s SpW
- CANFD, 1553

Arm® M7 SoC – SoC Architecture

Arm[®] Cortex[®]-M7 SoC

Same ecosystem from COTS to RT/RHBD

Evaluation Board

SAMRH71 Evaluation Kit (SAMRH71F20-EK)

Programmer and Debugger

MPLAB® PICkit 4 In-Circuit Debugger (PG164140)

or MPLAB® ICD 4 In-Circuit Debugger (DV164045)

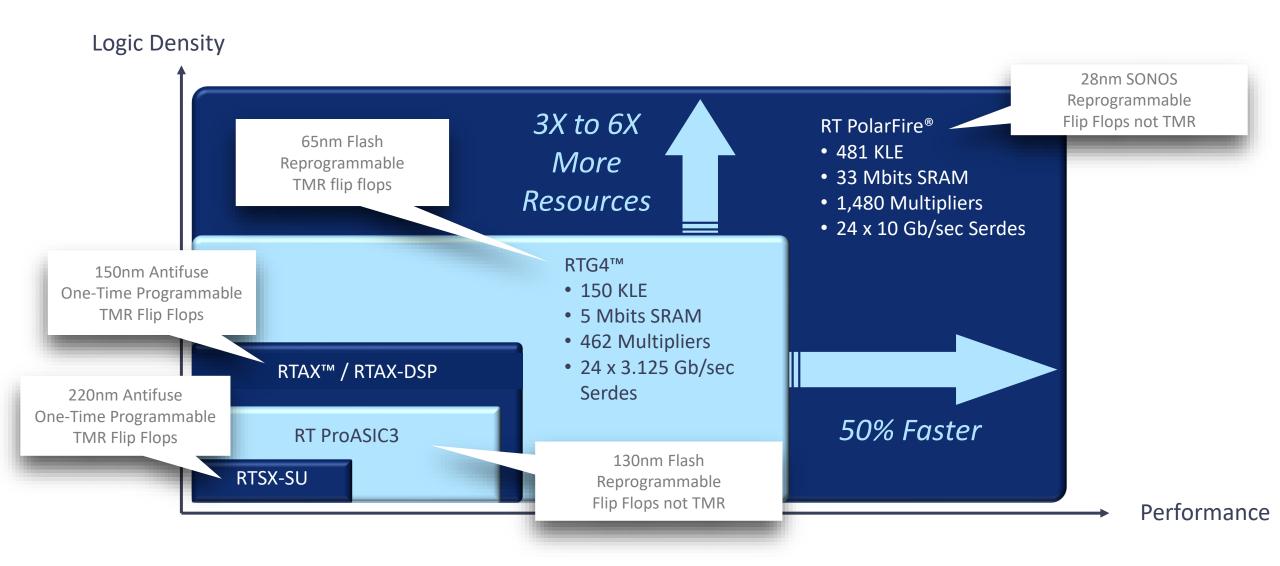
or J-32 Debug Probe (DV164232)

Microchip Software Tools Suite

Ready-to-use Software, Example Projects

Already ported OS for M7 SoC (V71)

A&D BSP/SW on-going projects with:



RT FPGA Families

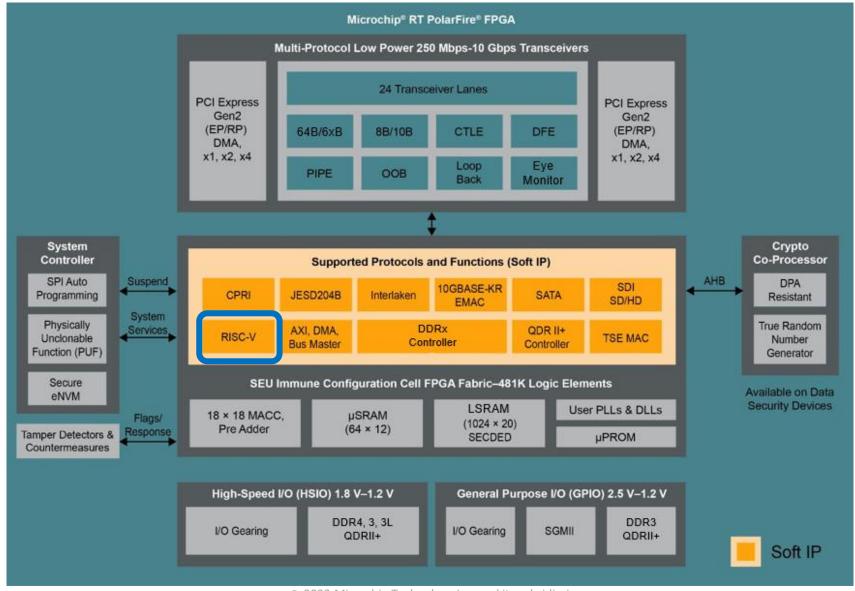
RT PolarFire® Plan

Commercial 28nm SONOS non-volatile and reprogrammable PolarFire die

- Metal layer change to facilitate ceramic package integration (wider C4 bump spacing)
- Radiation behavior characterized and reported, report available today
- Synthesized TMR, deploy where needed, available today in Libero® SoC
- devices and development kits available today for prototyping

Hermetically sealed, ceramic column grid array package

- 1509 solder columns (Six Sigma copper spiral columns)
- QML qualification to class Q, E and ultimately class V


Qualification status

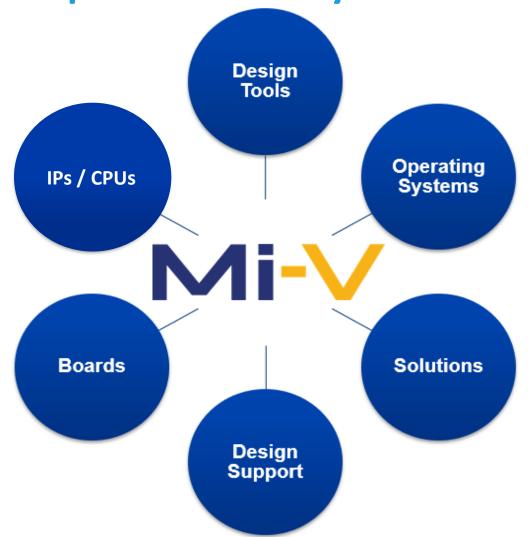
- Engineering Models (ES, EM) available today
- Mil Std 883 class B completed,
 - Lead time for B-flow and E-flow applies
- QML class Q 1H CY2023
- QML class V CY2024

RT PolarFire® FPGA Architecture

Why RISC-V?

- Free and open ISA
 - Clean Slate Design
 - Simple, Stable
 - Modular, Extendable

RISC-V owned by everyone


- RISC-V extends Moore's Law
 - Provides a free "architectural" license enabling innovation
 - Customers can, now, influence the micro-architectural design
 - Provides lower power & higher performances capabilities

What is Mi-V?

"Mi-V" (pronounced My-Five) = Microchip's RISC-V Ecosystem

- A continually expanding, comprehensive RISC-V Ecosystem
- Supporting client application development using Microchip's soft-CPUs and RISC-V SoC FPGAs
- Full solution since 2016
- Microchip is a RISC-V "pioneer"
- Exploding with more than 50 partners today

Mi-V Ecosystem Solutions

SIEMENS

AdaCore

MPSI

ubuntu

111

antmicro

💤 logictronix

Technolution

🖊 MathWorks® ื

🕶 officode 🚟 Linera

DIGITAL CORE

aicas

EmÇraft

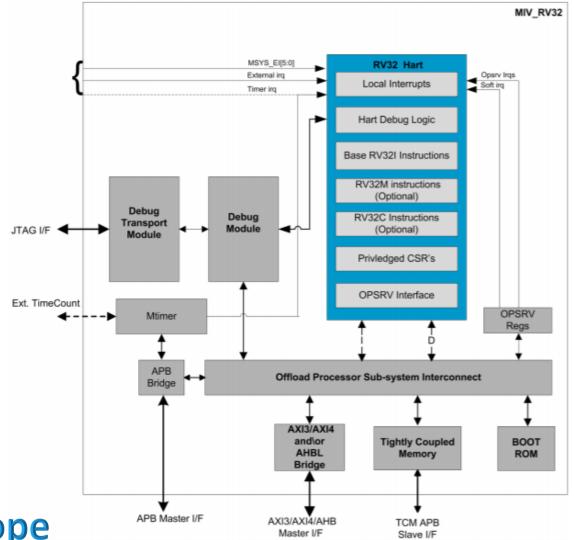
ONUMATO LAB

trenz

LAUTERBACH

• enclustra

ZASHLING

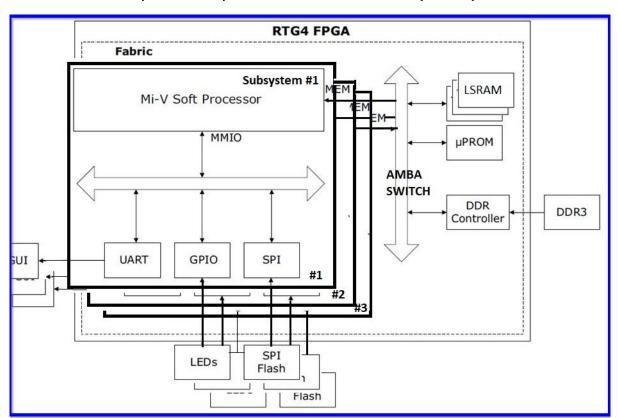


Mi-V_RV32 Configurable Soft CPU

RT-PolarFire® / RTG4TM / PolarFire® / IGLOO2®

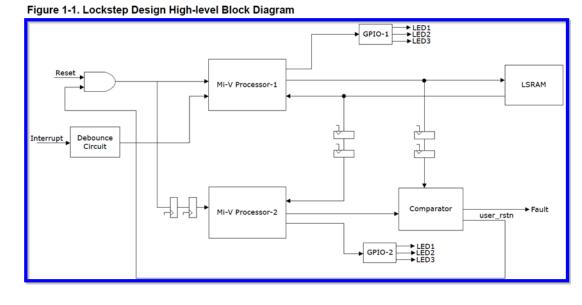
Features

- 2.77 Coremarks / MHz
- HW breakpoint 1
- Interrupts 13
- Timer / Counter 1
- 50 MHz–150 MHz (Product dependent)
- Optional / Configurable Features
 - AHB/AXI3/AXI4/APB Bus Interfaces
 - Integer mul/div
 - Tightly coupled memory
 - Debug
 - Error Correction



Soft IP developed in Europe

RISC-V Multicore on RT FPGAs


RISC-V Multi-Processors Subsystem

 Extensive list AMBA Based IP cores available AMBA Buses, LSRAM, UART, GPIO, SPI, I2C, Timer, WDOG, 1553B, Ethernet MAC 10/100/1000

RT PolarFire®, RTG4TM FPGA

- RISC-V Lockstep System AN4228
- Single RISC-V System TU0775, AC490

Getting Started

- www.mi-v.org
 - Design Tools
 - Supported hardware
 - Documentation:
 - Tutorials
 - Application notes & User guides

GitHub page:

- https://github.com/RISCV-on-Microsemi-FPGA
- Reference designs
 - Libero Projects
 - SoftConsole projects
- RTOS Ports
- Documentation and Sample Designs

Home / Products & Services / FPGA & SoC / Mi-V RISC-V Ecosystem

Mi-V RISC-V Ecosystem

Overview Getting Started Documents Renode Webinar Series Mi-V Partners Articles and News

Step 1: Download and Install the Latest Tools

Downloads	Description	
Libero SoC Design Suite	Libero SoC design suite is a comprehensive tool for designing with Microsemi FPGAs and SoCs	
SoftConsole	SoftConsole is a free software development environment for embedded firmware development	

Step 2: Choose a Target to view the compatible reference material

Step 3: Download the reference material compatible with your target

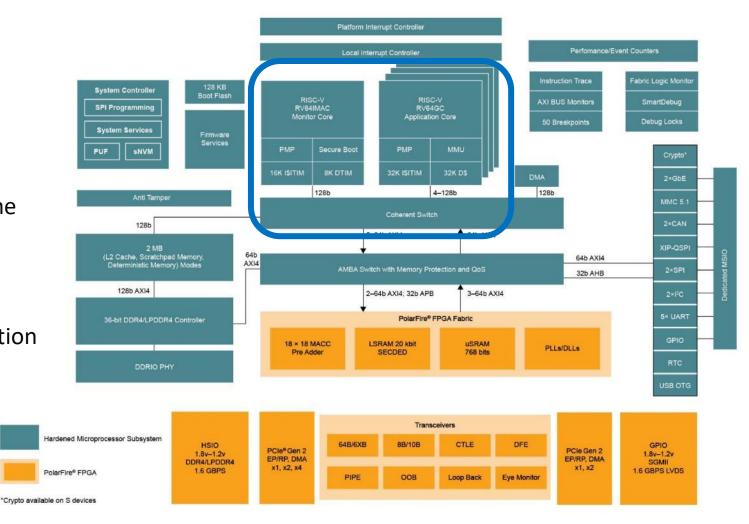
PolarFire Evaluation Kit				
Reference Material	Description			
TU0775: How to build a Mi-V soft CPU subsystem TU0775: Design file	A complete user guide to build a basic Mi-V CPU subsystem and execute a first embedded application			
Mi-V_RV32IMA_L1_AHB Handbook Mi-V_RV32IMA_L1_AXI Handbook Mi-V_RV32IMAF_L1_AHB Handbook Mi-V_RV32IMC Handbook	Handbooks for Mi-V Soft CPUs			
Mi-V RV32 Migration Guide	A guide to aid migration from the Mi-V RV32IMA(F) range of soft CPU cores to the latest high configurability Mi-V RV32 soft CPU core			
AC466: Application Note AC466: Design Files	A guide to implement Auto update and In-Application Programming using a Mi-V Soft-CPU			
DG0798: Demo Guide DG0798: Design Files	A guide to access the PolarFire FPGA System Services using a Mi-V Soft-CPU			
DG0799: Demo Guide DG0799: Design Files	A guide to run a 1G Ethernet Loopback design using IOD CDR, CoreTSE and a Mi-V Soft-CPU			
DG0802: Demo Guide DG0802: Design Files	A guide to implement, control and communicate using a PCle Root port using a Mi- V Soft-CPU			

Microchip Space Processing Solutions

- Microchip in Europe
- Space processing applications
- Space Microchip solutions available
- High processing solutions initiatives
 - RISC-V Polarfire[®] SoC
 - Arm® Multicore MPU
 - HPSC

PolarFire® SoC Overview

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions


PolarFire® SoC - RISC-V Enabled Innovation Platform

Highly Differentiated

- Low power, high performance SoC
 - Thermal efficiency
 - Solutions ~50% power of competition
- Unique AMP mode for mixed real-time and Linux[®] operation
- Defense grade security with Spectre/Meltdown immunity
- Exceptional reliability (SEU Configuration Immune)
- Smallest form factors

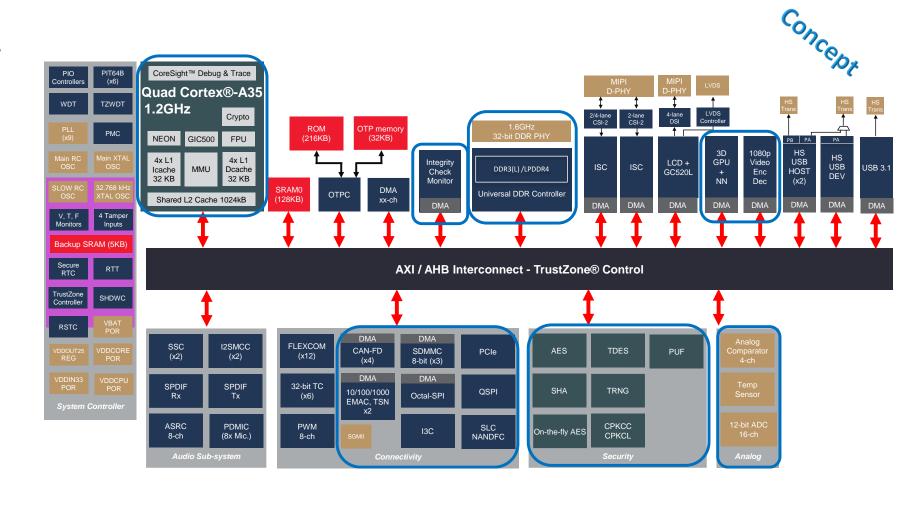
Freedom to Innovate in

- Linux® and real-time
- Thermal and power constrained systems
- Securely connected IoT systems
- Mixed criticality systems

RT assessment ongoing, results targeted H12023

ARM Multicore MPU assessment

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions



ARM Multicore MPU Platform

Ongoing development in France for Automotive

- Quad Core Ax >1GHz
- Rad assessment with CNES support
- Target RT version
- Video Codec
- 3D GPU
- MIPI/CSI-DSI
- DDR4
- PCle
- Gbit Ethernet TSN
- Security

HPSC

High-Performance Spaceflight Computing processor

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

HPSC: Redefining What's Possible For Space

- NASA JPL awarded contract to Microchip to develop the next-generation High-Performance Spaceflight Computing (HPSC) processor
- Provides >100X compute over current solutions
 - Based on multi-core, fault tolerant RISC-V architecture
- Microchip will architect, design and deliver HPSC integrating Ethernet, AI/ML, High-Speed Standardsbased Connectivity, Fault-Tolerance, Defense-in-Depth Security and Low Power capabilities
- Global collaboration between Microchip & Industry
 - R&D, IP & Manufacturing in Canada, Europe, U.S., SE Asia
- Target device availability in 2024

August 15, 2022 – NASA

NASA Awards Next-Generation Spaceflight Computing

Processor Contract

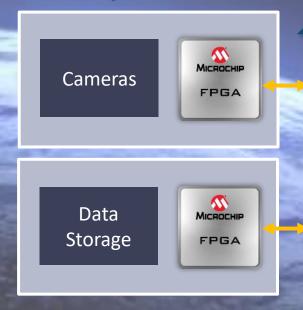
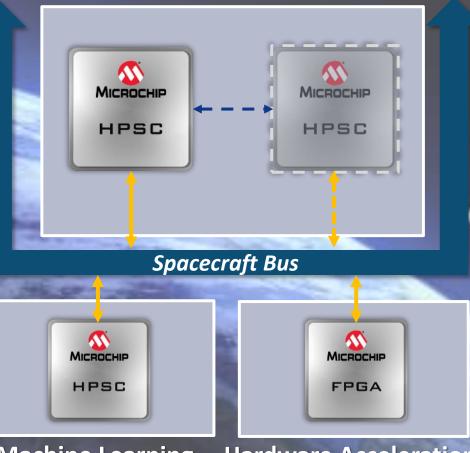
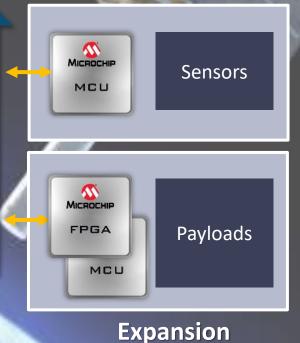
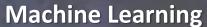


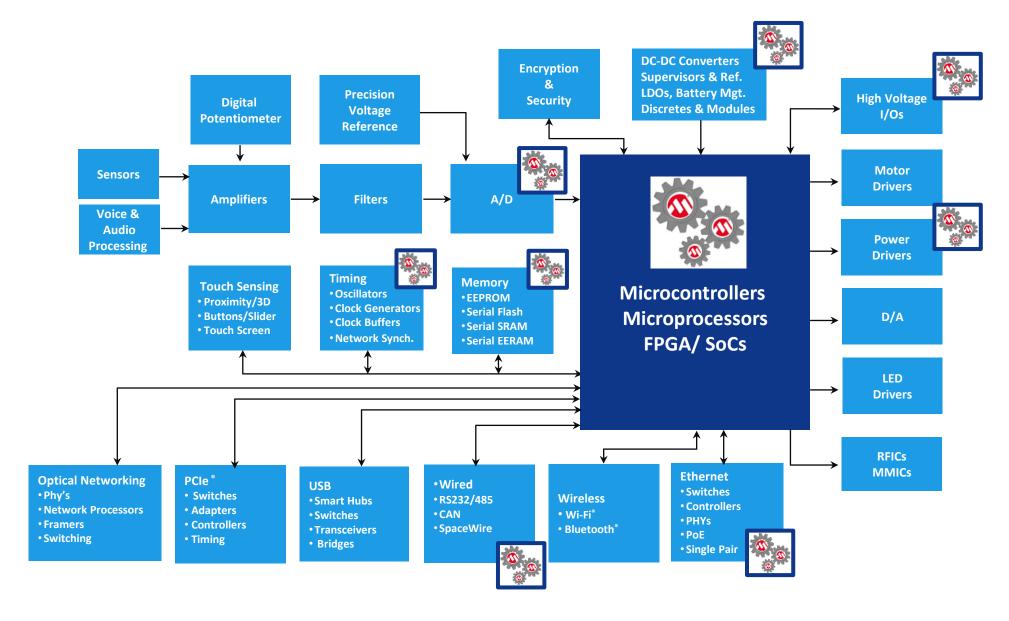
Photo courtesy: NASA




Extensible Space System Solution


Expansion

Scalable
High Performance Compute



Hardware Acceleration

Space System Design around processing solutions

Ethernet PHYs

Gbit/10Gbit

Switches 1588/TSN

PCle Devices

Flash/EEPROM

Power Modules

Clock Management

Space Processing Solutions Summary

- Go through the Microchip activities in Europe
- Unrivaled processors flight heritage
- Different type of processing solutions/ applications
- Arm® and RISC-V solutions today. Some ESCC qualified
- Working towards High Processing future solutions
 - FPGA RISC-V SoC
 - Arm® Multicore processor
 - HPSC
 - All connected together towards System Solutions

Thank You

microchip.com/spaceforum

More than 30+ presentations available

- Start 2nd November 2022
- Space Market Dynamics
- Product latest news
- System Use Cases and Technical Dives

