16th Workshop on Avionics, Data, Control and Software Systems

Introduction of a Space Glade Micro Processing Unit for Future Space Applications

Keita Sakamoto

Japan Aerospace Exploration Agency (JAXA)

- 1. Background
- 2. Benchmarking
- 3. Device features
- 4. Target Specifications
- 5. Architecture
- 6. Operating System
- 7. Evaluation status
- 8. Development schedule

1. Background

- ✓ Space activities has started since 1955 in Japan. (2003 ~ JAXA)
 - ✓ About 35 types of rockets have been developed and launched. (More than 300 satellites)
 - ✓ EEE parts for space-use have been supporting to do space activity for a long time.

□ H-2 • 1988 ~ 1999

Purely Domestic

- H-2A 2001 ~
- for almost satellites

Domestic & Overseas

H-2B

2009 ~ 2020

Domestic &

Overseas

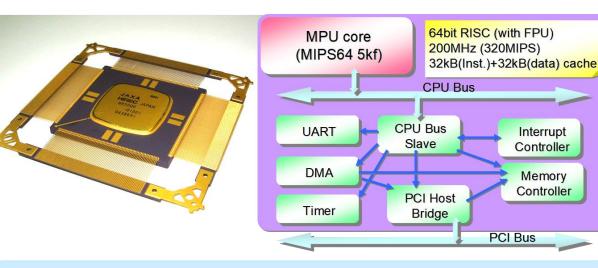
for cargo

п

•

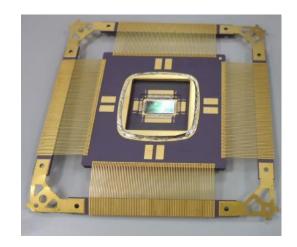
- □ H-3
- Under development

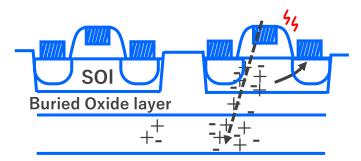
COTS-base



1. Background

Page 3 / 16

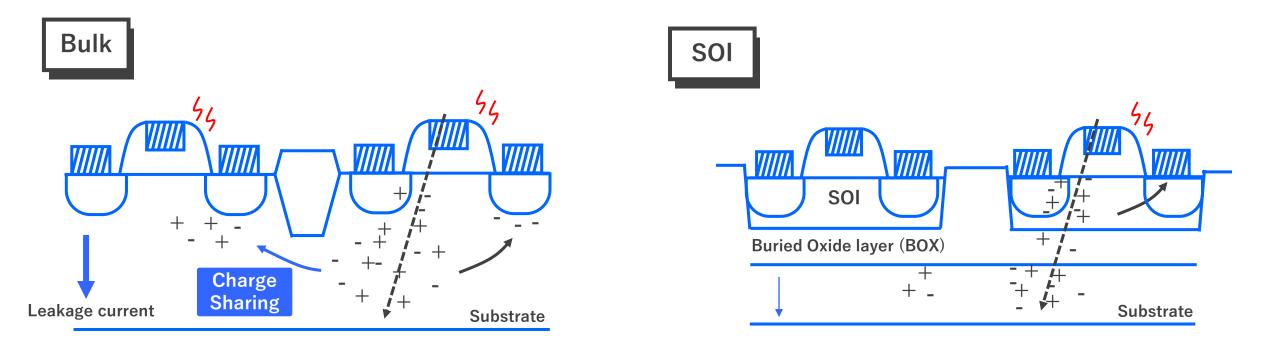



Current MPU: HR5000 (Bulk CMOS) and HR5000S (SOI)

MIPS64 5kf architecture with on-chip peripherals.
 0.18µm commercial CMOS process.
 200MHz operation (320MIPS)
 JAXA qualified. (Mar. 2007)

SOI Process 0.15 um

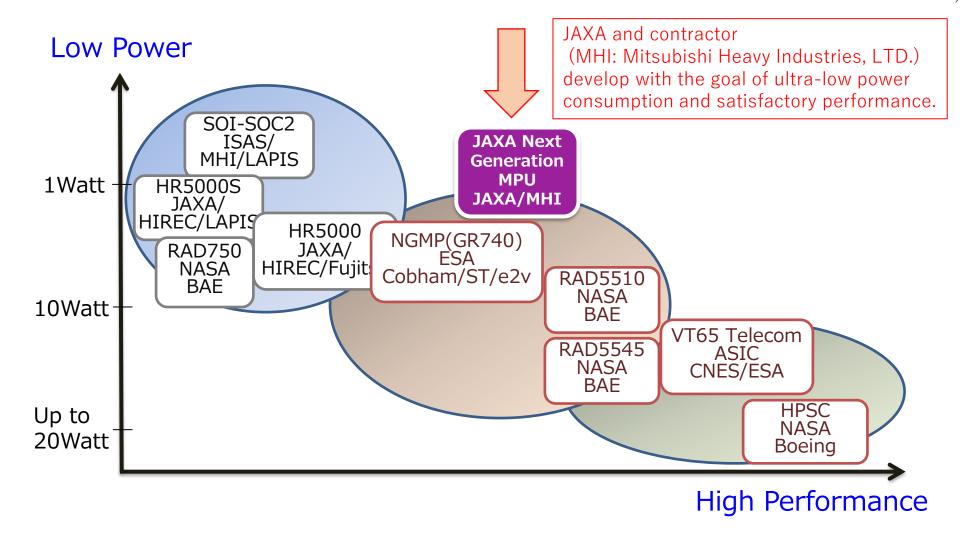
Conceptual drawing of SOI process


SOI technology is introduced to the MPU as a radiation hardening methodology

1. Background

Page 4 / 16

The differences between Bulk process and SOI process



□ Advantages of SOI process
 □ Device structure of SOI process itself can prevent charge sharing effect → Good Radiation Tolerant
 □ Leakage current can be well suppressed. → Low power consumption

2. Benchmarking

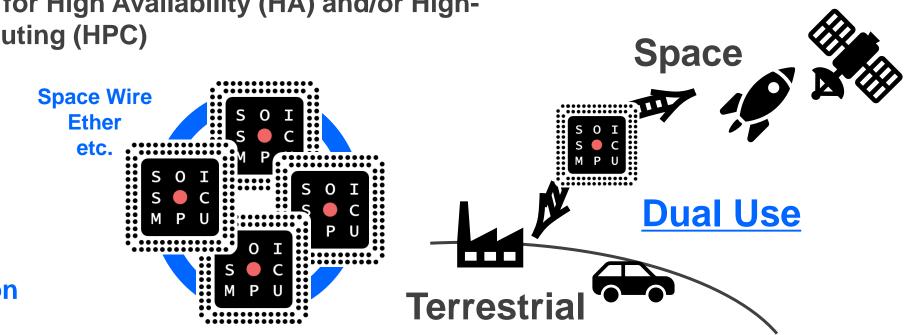
Page 5 / 16

Position of JAXA Next Generation MPU in Global MPU Tendency

3. Device features of the next MPU

- □ Micro Processing Unit (MPU) for next decade
 - Dual Core processor (RXv3, Renesas Electronics)
 - A variety of Interface protocols (Space Wire, Ethernet,..etc)
 - High reliability as a space glade (JAXA-QTS-2010)
 - On-chip code memory (SRAM)

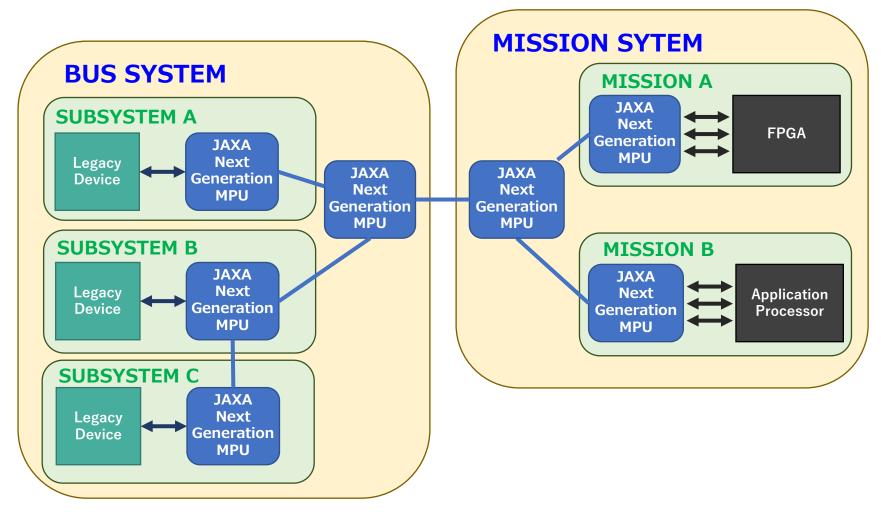
□ Features


- Low power consumption; SOI process
- High Radiation tolerance
- Cluster connection for High Availability (HA) and/or High-Performance Computing (HPC)

Engineering Model sample

Page

6 / 16


Concept

- Dual Use
- Low power
- High reliability
- Middle performance
 - ➡ Cluster connection

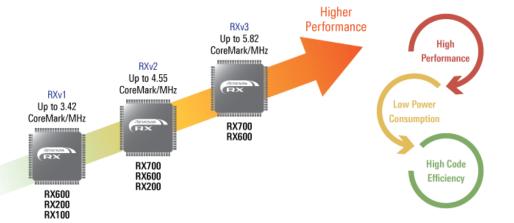
3. Device features of the next MPU

Various I/Os widely support from legacy devices to future interfaces. Network I/Os improve development efficiency by distributed system.

4. Target specifications

Page 8 / 16

	Function	Parameter		Description
<section-header><section-header></section-header></section-header>	Core & Memory	Dual Core (RV	′v3)	Double-precision floating point
		Frequency		250 MHz (900 CoreMark; 10x larger than that of current MPU) @PVT=Typical
		On-chip memory		HD-SRAM w/ EDAC • Instruction-RAM • Data-RAM RHBD-SRAM w/ EDAC • Data-RAM
		Power consumption		< 1 W @PVT=typical
	Interface	Space Wire Driver		6 channels
		Ethernet		2 channels
		MIL-STD-1553B		2 channels
		CAN		2 channels
		SCI		4 channels
		SPI		2 channel
		I2C		2 channel
Qualification & Reliability	Hard-Macros Security-IP			Elliptic Curve Cryptography
	Qualification guideline		Target	
	JAXA-QTS-2010C		Specification for space glade LSI	


5. Device architecture (Function block diagram)

Page 9 / 16

5. Device architecture (RXv3)

RXv3-based Core architecture (We combined an FPU module with RXv3 architecture)
 One of the RX-series (Renesas) which is implemented into industry, commercial, etc.

• 32bit CISC Harvard Architecture

Page

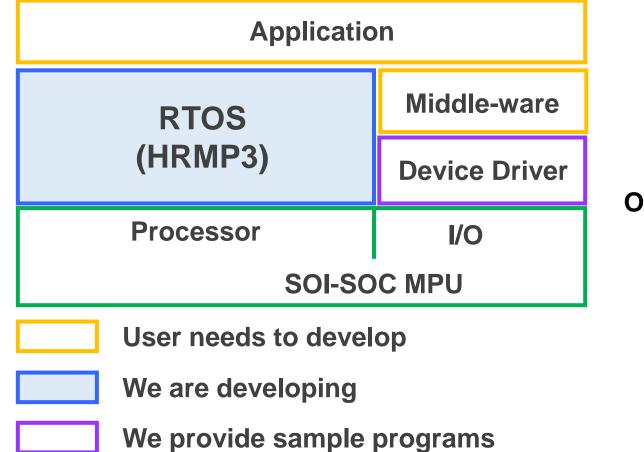
10/16

- 5-stage pipeline
- FPU
- Up to 6.01 Coremark/MHz
- Low power consumption

https://www.renesas.com/jp/en/products/microcontrollers-microprocessors/rx-32-bit-performance-efficiency-mcus/rx-features/linear-sectors/li

□ Evaluated score on the SOI-SOC MPU (Engineering model)

Device	Score [Coremark/MHz/Core]		
	CPU0	CPU1	
HR5000S	1.54	-	
SOI-SOC MPU	4.82	-	
SOI-SOC MPU	2.61	2.6	


6. Operating System

Page 11 / 16

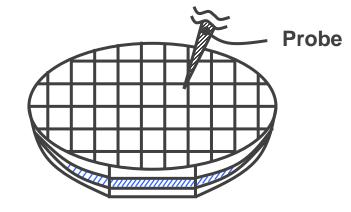
□ Realtime Operating System (RTOS) which is suitable for our MPU is under developing.

- □ Base model is TOPPERS/HRP (High Reliable system Profile) kernel (HR5000S).
- □ Beta-version has already released and built in the MPU (EM) for evaluation.
- **D** Evaluation combined RTOS with Printed Circuit Board has completed.

On-orbit demonstration under cinsideration

7. Evaluation (Wafer-test)

Page 12 / 16


□ Function ✓ Completed

- Memory built-in self test (M-BIST) for static random-access memory (SRAM) region
- DC function test
- AC function test
- Loose function test
- SCAN test for distributed logic circuit (combinational logic & sequential logic)
- PLL function

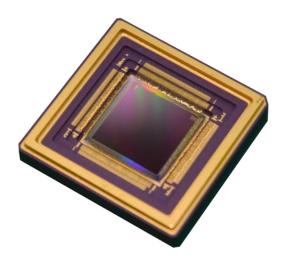
Desired logic functions were validated

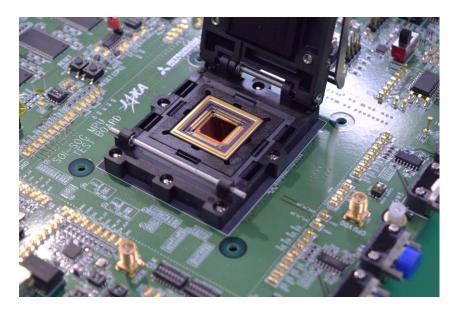
□ Performance ✓ Completed

- SCAN test for critical path of distributed logic circuit
- IDDQ, IDDA

Operating frequency & power consumption were validated

7. Evaluation (On-board test)


Page 13 / 16


- We've designed and manufactured printed circuit boards for evaluation test
 - **Electronical evaluation (including operating performance)**
 - □ Functional evaluation (including communicate with peripheral chip)

Quick-sort
 CoreMark Score
 Space Wire communication program

□ Radiation test (SEE, TID)

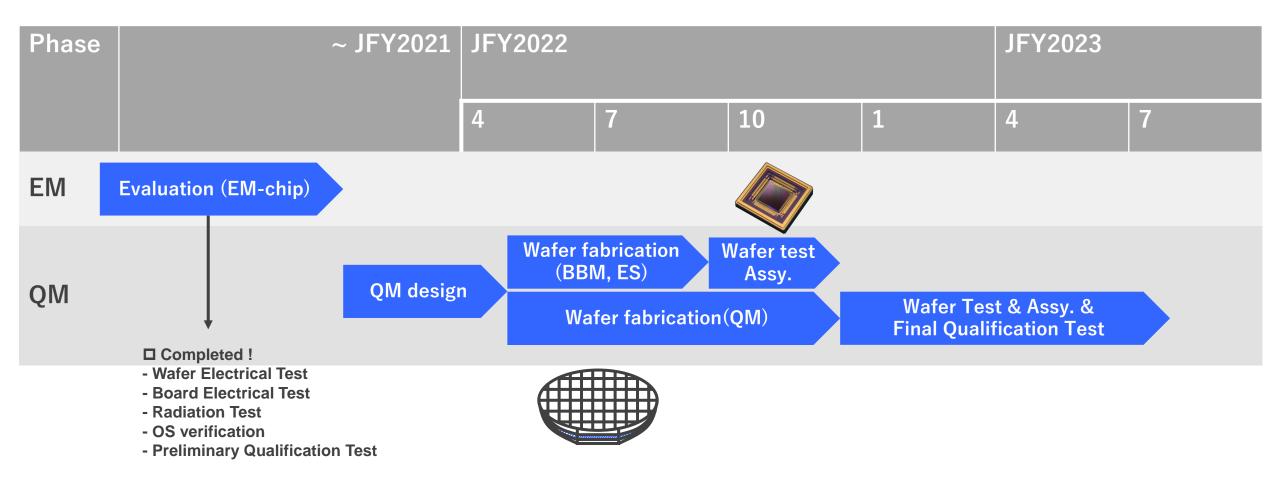
Photograph of EM-chip assembled on a BGA package

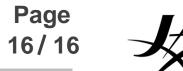
Photograph of evaluation board

7. Evaluation (Brief summary of the test results)

Page 14/16

□ Below table shows the test results of both electrical and radiation test


Evaluation	Result	Comment
Frequency	280 MHz (max.) @PVT=Typical	Benchmark program (CoreMark)
Performance [CoreMark@250MHz]	800 ~ 1200	Depending on the operating configuration
Power Consumption	0.787 W @PVT=Typical	CPU0: CoreMark CPU1: Space Wire
Radiation	 SRAM w/ RHBD: 40 MeV/(mg/cm²) SRAM w/ EDAC: 40 MeV(mg/cm²) SEL: ≥ 80 MeV/(mg/cm²) @ 125°C EM-chip: ≤ 100FIT 	


8. Development schedule

Page 15/16

- □ Wafer process has been finished
- □ Wafer Test and assembly are on-going
- □ Final qualification test will start soon
- Development of this MPU will be finished until the middle of JFY 2023

Thank you for your kind attention

URL of this MPU

http://www.kenkai.jaxa.jp/eng/research/soisoc/soisoc.html

Mail

sakamoto.keita@jaxa.jp