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Apophis, near-misses and resonant returns

When Apophis was discovered, impact monitoring showed that,
besides the possibility of a collision, there was also the possibility
of a near-miss.

Nearly missing the Earth means a large orbital deflection, with a
continuum of possible post-encounter orbits, among which there
are some that can lead to a resonant return and to a collision.

The cross-sections of resonant returns are generally much smaller
than the cross-section of the immediate collision; one reason why
they are small is the divergence of nearby post-encounter
trajectories, that accumulates with time, so that returns that are
far in the future have very small cross-sections.

But, is it always so?

What about returns taking place after only 1, 2, 3 years?



Apophis, near-misses and resonant returns

We hereafter study the resonant returns of Apophis taking place
within only three years after the very close encounter with the
Earth of April 2029.

In particular, we consider the b-plane of that encounter.

The b-plane is the plane centred on the Earth and perpendicular to
the geocentric unperturbed velocity U of the asteroid (Kizner
1961); U crosses the b-plane in the point of coordinates &, ¢
(Valsecchi et al. 2003).

The coordinate £ is the local minimum orbit intersection distance
(MOID), while the coordinate ( is related to the timing of the
encounter.



The semimajor axis perturbation

Before the first encounter of the pair, the asteroid has an orbital
semimajor axis given by:

a=1/(1—- U?—-2Ucosb)

where U is the modulus of U and 6 is the angle between U and
the heliocentric velocity of the Earth.

The first encounter turns U into U’, of the same modulus; 6 is
changed into &', so that the post-first-encounter semimajor axis is
a’, given by:

d=1/(1-U%—-2Ucos®).



The b-plane circles

For a resonant return to take place, Apophis has to cross the
b-plane in a point lying on a circle whose coordinates of the centre
and radius are functions of the pre-encounter orbital elements, and
of the post-encounter resonant period (Valsecchi et al. 2003).
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The divergence of nearby trajectories

In a resonant return the first encounter puts the small body in an
orbit such that it collides with the planet after h revolutions on the
new orbit, while the planet makes k revolutions, with h, k integers.

Going from the b-plane of the first encounter to that of the second
the orbit is “stretched”: the separation along ( increases due to
differential perturbations of the post-encounter orbital period.

Thus, the cross-section of the planet on the b-plane of the second
encounter has a pre-image on the b-plane of the first encounter
that looks like a thin arclet, lying on, or close to, the b-plane circle
corresponding to the h/k MMR (Valsecchi et al. 2003).

Chodas (1999) called “keyhole” the pre-image of the planet on the
first b-plane of a resonant return.



What a keyhole looks like

In the restricted circular 3-dimensional 3-body problem, we can
reconstruct the shape in the 2029 b-plane of Apophis keyhole
associated to the 2/3 MMR.

The black circle is the Earth <)
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The red circle shows the
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The divergence of nearby trajectories

Let us denote with ¢ the ¢ coordinate on the second b-plane; we
are interested in computing by how much ¢” is stretched with
respect to ¢ between the first and the second encounter.

Valsecchi et al. (2003) give an expression for the partial derivative
of ¢” with respect to (:
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where ¢’ is the post-first-encounter value of # and c is the
geocentric b-plane distance leading to a deflection of U by 90°.



The divergence of nearby trajectories

In the partial derivative 9¢”/0(, the first term becomes quickly the
dominant one.
It is the product of:

e the number of revolutions of the small body between the first
and the second encounter, growing linearly with time;

e the function s(U, ¢’), that we discuss in a moment;

e the derivative 0 cos @’ /9¢, that can be large for very close
encounters.



Digression: (410777) 2009 FD keyholes

Before discussing the function s, let us see how the theoretical
expression for 9¢” /¢ works in a real case.

In Spoto et al. (2014) are examined a number of Earth collisions at
resonant returns originated by the close encounter of (410777)
2009 FD keyholes in 2185.

These resonant returns are computed numerically both with the
LoV method of Milani et al. (2005) and with a Monte Carlo
method developed at JPL.

From Tables 2 and 3 of Spoto et al. (2014) we can gather the
stretching increment between the 2185 encounter and each of the
four resonant returns identified by both the LoV method and the
Monte Carlo.



Digression: (410777) 2009 FD keyholes

The Table below compares these stretching increments to the
values of 9¢"”/9( computed by the theory.

The agreement is good with the LoV method, less good with the
MC; however, the latter is affected by the limited resolution due to
the relatively small number of initial conditions sampled.

Year h/k | LoV MC  Theory
2190 4/5 [1.6-10' 1.6-10' 1.6-10¢
2191 5/6 |2.0-10% 1.3.10® 2.1-10°
2192 6/7 |6.0-103 2.3.10® 6.6-10°
2196 9/11 | 1.2-10% 3.1-10% 1.4.10°




The divergence of nearby trajectories

Let us now examine the expression for s:

_ 2m[Ucos? 0 + cos ¢ (1 — U?) — 3U]
(1 —U2—-2Ucos#)5/2sin¢

The sign of s depends on the sign of the numerator; it is easy to
see that s = 0 for:

0= Ucos®# 4 cosf'(1 — U?) —3U.

This condition defines a line in the plane U-cos®.



The condition s = 0 and Apophis

cos

In the U-cos@ plane the big 0.5
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position of Apophis. 0.0
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The coloured dots shows the MMRs we are discussing. Top to
bottom: 1/2 (magenta), 2/3 (red), 1/1 (blue), 4/3 (orange),
3/2 (green).

The brown line is the condition s = 0.

We next compute the maximum keyhole widths for each of these
resonances.



Apophis keyholes maximum widths

year | h/k | @ (au) & (°)  ((rg) s width (km)
2031 | 1/2 | 1.5874 24.0 231 11.9 0.60
2032 | 2/3 | 1.3104 56.5 431 0.4 11.04
2030 | 1/1 | 1.0000 95.3 1796 —4.0 23.98
2032 | 4/3 | 0.8255 131.8 —-10.29 7.8 1.41
2031 | 3/2 | 0.7631 159.3 —4.45 -—17.6 0.38

What is noticeable in the Table is that keyhole widths are neither a
simple function of the time interval between the two encounters
(i.e. of k), nor of the closeness of the encounter (i.e. of ¢, through

dcos b /0C).

Particularly noteworthy is the role of s; we next explore different
initial conditions for Apophis in 2029 that would highlight this
aspect.



The keyhole associated to the 2/3 MMR

For the keyhole associated to the 2/3 MMR the value of s is close
to 0.

Nevertheless, the orbit of the real Apophis, characterized by
U =0.184,60 = 108°7, needs a very large deflection, by more than
52°, in order to be deflected into the 2/3 MMR.

The large deflection implies a very close encounter, closer than the
one which will actually take place in 2029; anyway, the keyhole size
can at most be of the order of 10 km.

What if, before the 2029 encounter, Apophis had the same
geocentric velocity U, but a value of 6 differing by just a few
degrees from that corresponding to the 2/3 MMR?



A “what if" scenario

Let us suppose that Apophis were, before the 2029 encounter, in
an orbit with U = 0.184 and 6 = 605, just 4° away from the 2/3
MMR.

In this case, the orbital semimajor axis would be 1.2739 au (the
real Apophis now has a = 0.9226 au); the Table shows the
corresponding theoretical maximum keyhole widths.

year | h/k | @ (au) @' (°) ((rp) s width (km)
2031 | 1/2 | 1.5874 24.0 6.38 11.9 2.76
2032 | 2/3 | 1.3104 56.5 60.48 0.4 1870.17
2030 | 1/1 | 1.0000 953 —6.73 —4.0 3.65
2032 | 4/3 | 0.8255 131.8 —294 78 0.17
2031 | 3/2 | 0.7631 159.3 —-1.81 -—17.6 0.12

Note that a not very deep encounter is needed to reach the 2/3
MMR, and that the maximum keyhole size is really very large.



The importance of s

On the other hand, if before 2029 Apophis had still U = 0.184 but
0 = 127°8, it would again be just 4° away from a MMR, this time
the 4/3. The orbital semimajor axis would be 0.8392 au, and the
corresponding theoretical maximum keyhole widths would be those
in the Table below.

year | h/k | @ (au) ¢ (°)  ((rg) s width (km)
2031 | 1/2 | 1.5874 24.0 1.65 11.9 0.44
2032 | 2/3 | 1.3104 56.5 2.94 0.4 6.28
2030 | 1/1 | 1.0000 95.3 722 —40 4.16
2032 | 4/3 | 0.8255 131.8 —-60.26 —7.8 46.27
2031 | 3/2 | 0.7631 1593 —7.47 -17.6 0.95

Now, even if for the 4/3 MMR the encounter distance and the
time between encounters are the same as previously for the 2/3,
the maximum keyhole size is much smaller, the difference being
due to the value of s.



Summary

Among the keyholes present on the b-plane of a near-miss
there may well be some associated to “quick” resonant
returns, i.e. returns taking place only a few years after the
near-miss.

In general, the size of keyholes associated to “quick” resonant
returns is small.

The analytic theory of close encounters shows that there are
peculiar conditions under which a specific keyhole associated
to a “quick” return may be large.

To further assess the validity of the theory, the above
conditions will be the object of numerical checks.
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