

The Scout short-arc orbit determination and impact hazard assessment system

D. Farnocchia, S.R. Chesley,

S.P. Naidu, A.B. Chamberlin

Observations reported

Confirmation process

Object added to the catalog

Impact Risk Data

Object Table

VI Table

FAQ

Operational Notes

Introduction

The following table summarizes by object the potential future Earth impact events that the JPL Sentry System has detected based on currently available observations. Click on the object designation to go to a page with full details on that object.

Removed Objects

Sentry is a highly automated collision monitoring system that continually scans the most current asteroid catalog for possibilities of future impact with Earth over the next 100 years. Whenever a potential impact is detected it will be analyzed and the results immediately published here, except in unusual cases where we seek independent confirmation. It is normal that, as additional observations become available, objects will disappear from this table whenever there are no longer any potential impact detections. For this reason we maintain a list of removed objects with the date of removal.

Table Settings:			[Use Unconstrat	ned Se	ettings] [Use Defaults]
Observed anytime	-	Any Impact probability •	Any Palermo scale	•	Any H -

Show 10 entries

Showing 1 to 10 of 815 ent	tries								Search:	Object Designation
Object Designation \$	Year Range	Potential Impacts	Impact Probability (cumulative)	♦ V _{infini} (km/s	y 🔷 H) (mag)	Es ♦ Di	timated iameter (km)	Palermo \$ Scale (cum.)	Palerr Scale (max	no Torino e \$ Scale \$.) (max.)
(2010 GZ60)	2018-2116	475	5.4e-6	2.9	8 16.1		2.000	-0.90	-1.5	98 0
29075 (1950 DA)	2880-2880	1	1.2e-4	14.	10 17.6	j	1.300	-1.42	-12	42
101955 Bennu (1999 RQ36)	2175-2199	78	3.7e-4	5.9	9 20.2	!	0.490	-1.71	-2.	32
410777 (2009 FD)	2185-2198	7	1.6e-3	15.	37 22.1		0.160	-1.78	-1.	83
(2017 RH16)	2026-2117	49	8.5e-4	12.	78 25.6	i	0.026	-2.59	-2.	59 0
(2010 AU118)	2020-2112	38	1.8e-8	25.	22 16.2	1	1.900	-2.72	-3.	14 0
(1979 XB)	2056-2113	2	7.4e-7	23.	92 18.5	i	0.662	-2.82	-3.	12 0
(2007 FT3)	2019-2116	165	1.5e-6	17.	06 20.0)	0.340	-2.82	-3.	17 0
99942 Apophis (2004 MN4)	2060-2105	12	8.9e-6	5.8	5 19.1		0.370	-2.83	-2.	93 0
(2000 SG344)	2069-2113	101	2.6e-3	1.3	6 24.8	1	0.037	-2.86	-3.	23 0
Brint CSV Excel								Previous 1	2 3 4	5 82 Next

Home			Abour	t 🔻 Orbits 🔻	Close Approaches	Impact Risk	Planetary Defense	Discovery Statisics	Tools 👻	Extras	
HOME -> IMPACT RISK -> SEI	NTRY										
Sentry: Ea	rth Imp Table VI Table	Dact Mo	Onitoring erational Notes Re	moved Objects							
Impact Risk Dat	а										
The following table summa the object designation to g	arizes by object go to a page wit	the per				d bi	ased on currently	y available obse	rvations. (Click on	
Sentry is a highly automative years. Whenever a potential it is normal that, as addit we maintain a list of research of the setting of the se	ed cr ja'	Je. paci	ntry: t mor since	you vitor 20	r tri ing V01	usted syst	em.	act with Earth o re seek indepe pact detection gs] [Us hy H Search: C Palermo	ver the ne ndent con ons. For th e Default	xt 100 firmation his reason s] - gnation	n
Designation \$	Range 🍦				-		Scale (cum.)	Scale (max.)	¢ 5	Scale max.)	÷
(2010 GZ60)	2018-2116	475				2.000	-0.90	-1.98		0	
29075 (1950 DA)	2880-2880	1	1.2e-4	14.10	17.6	1.300	-1.42	-1.42			
101955 Bennu (1999 RQ36)	2175-2199	78	3.7e-4	5.99	20.2	0.490	-1.71	-2.32			
410777 (2009 FD)	2185-2198	7	1.6e-3	15.87	22.1	0.160	-1.78	-1.83			
(2017 RH16)	2026-2117	49	8.5e-4	12.78	25.6	0.026	-2.59	-2.59		0	
(2010 AU118)	2020-2112	38	1.8e-8	25.22	16.2	1.900	-2.72	-3.14		0	
(1979 XB)	2056-2113	2	7.4e-7	23.92	18.5	0.662	-2.82	-3.12		0	
(2007 FT3)	2019-2116	165	1.5e-6	17.06	20.0	0.340	-2.82	-3.17		0	
99942 Apophis (2004 MN4)	2060-2105	12	8.9e-6	5.85	19.1	0.370	-2.83	-2.93		0	
(2000 SG344)	2069-2113	101	2.6e-3	1.36	24.8	0.037	-2.86	-3.23		0	
Print CSV Excel							Previous 1	2 3 4 5	5 8	82 Nex	t

Time is of the essence

~ 5 m

- R. Kowalski, Catalina Sky Survey
- ~ 20 hours before impact

2008 TC₃ Nubian desert, Sudan

Observations reported

NEO Confirmation Page

Routine NEO

Impactor

Systematic ranging

Systematic ranging on 2014 AA

Scout: NEOCP Hazard Assessment

Introduction Data Table Object Data Ephemeris

Data Table

Scout data are about unconfirmed objects and all information should therefore be treated as potentially unreliable.

The following table contains NEOCP @ objects analyzed by Scout. Because of the generally short observation arcs and the uncertain quality of the astrometry, the reported impact ratings and scores are meant to identify interesting objects rather than provide a rigorous probability assessment.

Table Filter: Enter desired filter parameter values the	en press the "Apply Filter" button.	
NEO Score (min)	V-mag (range)	RA (range)
POS Unc. (range)	Elong. (min)	Dec (range)
POS Unc.+1 (range)	Rate (max)	Apply Filter Reset

Search: Search object

Showing 1 to 69 of 69 entries

Object 🍦	#obs	Arc (h)	RMS	H ≑	Impact Rating	MOID (au)	CA Dist. (LD)	V _{inf} (km/s)	PHA	NEO 🕴	NEO > 1km	Geo.	IEO	T _J < 3	Last Update (UTC)	RA (hh:mm)	Dec. (deg.)	Elon (deg
ZTF01Ym	6	1.18	0.31	25.2	1	0.01	6.2	16.0	0	100	0	0	0	45	2018-09-28 18:12	02:12	-39	13
P20Jyx5	3	0.59	0.14	26.3	1	0.006	11	10.9	0	100	0	0	0	36	2018-10-04 16:01	02:47	+13	14
P20Jril	3	0.84	0.22	18.9	1	0.4			0	57	9	0	0	61	2018-10-02 18:06	00:40	+06	17
ZSA598F	4	0.41	0.34	26.8	0	0.01	5.2	10.4	0	100	0	0	0	53	2018-09-30 09:19	03:49	+52	11
ZSA3500	3	0.41	0.37	25.9	0	0.06	24		0	100	0	0	0	43	2018-09-30 07:58	23:12	+17	15
A108U34	4	0.72	0.21	27.9	0	0.0005	0.29	9.6	0	100	0	1	0	51	2018-10-01 13:34	08:53	+13	6
A108Z7p	4	0.72	0.28	27.4	0	0.007	2.7	11.1	0	100	0	0	0	49	2018-10-03 13:00	02:09	-39	13
ZSA1411	8	1.65	0.78	27.6	0	0.009	3.4	16.1	0	100	0	0	0	60	2018-09-30 11:00	09:00	-43	6
ZSA4C92	4	0.41	0.42	29.8	0	0.001	0.59	19.7	0	100	0	0	0	61	2018-09-30 08:49	11:47	-00	1
P20Jurc	3	0.56	0.00	26.7	0	0.01	5.8	21.9	0	97	0	0	0	46	2018-10-03 21:26	00:19	-11	16
P20Jri9	3	0.84	0.01	25.9	0	0.05	19	18.3	0	100	0	0	0	43	2018-10-02 17:07	01:46	-21	15
A108Z7t	3	0.48	0.02	24.7	0	0.01	6.3	29.0	0	100	0	0	0	28	2018-10-03 15:32	00:28	-18	15
A 100WON		0.77	0.45	00.0	0	0.02	14	14 5	0	100	0	0	0	FC	2010 10 02 15:47	00.56	22	44

Non-linear plane-of-sky uncertainty

Select NEOCP Object

Ephemerides

Enter desired ephemeris parameters.

By default, a geocentric (code=500) ephemeris is generated at the current time with no lin

Start Time (UTC):	Observatory Code:
Current time	500
Stop Time (UTC):	Limiting magnitude:
Time Step:	
Submit	

P10wlQa Origin: median ephemeris coordinates R.A. / Dec. (336.97258 / 8.29706) deg. = (22:27:53.3 / 08°17'49") 21.7 21.6 10.0 relative Dec. [arc-minutes] 21.5 5.0 V-band magnitude 21.4 0.0 0 -21.3 0 21.2 -5.0 -21.1 -10.0 21.0 -5.0 5.0 0.0 -10.0 -15.0 -20.0

relative R.A. cos(Dec.) [arc-minutes]

1 of 2 FRM:JPL Scout System SUBJ:Scout: ZLAF9B2 MSG:IP = 5%, CA_DIST=6.1 RE, URL = <u>http://</u> <u>cneos.jpl.nasa.gov/scout/#/</u> <u>object/ZLAF9B2</u>

2018 June 2 11:32 UT

ZLAF9B2 = 2018 LA

Based on 11 observations from Catalina Sky Survey

St Helensymmestown Catalina and ATLAS

USG firebail report BOLEVALE

Angola

Brazzaville Kinshasa

Tuanda

emocratic Republic of the Con

Bujumbura

tusaka

Gaborone

Dimensberg Mountains

Harare

Mbabane Maputo

Mozambique

© 2018 AfriGIS (Pty) Ltd. US Dept of State Geographer Image Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO

https://www.seti.org/press-release/fragment-impacting-asteroid-recovered-botswana-0

2019 MO

A few meters in size

Discovered by ATLAS 11 h prior to impact

No additional data, impact probability 0.4%

Pan-STARRS precoveries

Geostationary Lighting Mapper

2022 EB5

56 min to impact 14 obs over 33 min Impact on 2022 March 11

 \sim 2 m in size

Discovered by Hungarian observatory GINOP-KHK 2 h before impact

2022 WJ1

Credit: R. Weryk

Summary

- Scout is a JPL system for early detection of asteroid impacts
- Still unconfirmed objects from the Minor Planet Center's NEO Confirmation Page
- Systematic ranging for orbit determination
- Rapid and fully automated, email & text alerts
- Real cases demonstrated capability of making accurate predictions and asteroid community responsiveness

Jet Propulsion Laboratory California Institute of Technology

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

© 2022. California Institute of Technology. Government sponsorship acknowledged.

2022 EB5

2022 Mar 11, 19:47:55 UTC 1,000x time

2022 WJ1

2022 Nov 19, 07:04:31 UTC 1,000x time

