Catalina Sky Survey: Imminent Impactor Detection and Follow-up Coordination

Eric J. Christensen

On behalf of CSS + NEOfixer

D. C. Fuls, A. R. Gibbs, S. M. Larson, R. L. Seaman, D. Fay, J. B. Fazekas, A. D. Grauer, B. Gray, H. Groeller, J. K. Hogan, R. A. Kowalski, G. J. Leonard, D. Rankin, A. Serrano, F. C. Shelly, J. Sosa, K. W. Wierzchos

EU-ESA Workshop on NEO Imminent Impactors Warning Coordination | Darmstadt, Germany | 12-14 December 2022

CSS: Imminent Impactors

- CSS attributes for impactor detection
 - Instrumentation
 - Operations model
 - Survey strategy
- 2022 WJ1: the CSS perspective
- NEOfixer follow-up broker

CSS attributes: instrumentation

- Simple cameras. G96 and 703 use single-detector, monolithic cameras (STA-1600 10560 x 10560 CCDs).
- 2x2 binning. Advantages are many:
 - Faster readout time for high open-shutter efficiency
 - Smaller file sizes, easier to process, transport and store
 - Larger pixel scales minimize trailing of nearby objects
 - CSS survey camera pixel scale ranges from 1.0" 3.0" / pix
 - PSFs generally undersampled, but image quality is uniform across a range of typical seeing

CSS attributes: operations model

- Near real-time processing of survey data:
 - Multiple processing workstations located at the telescope
 - Fully processed ~5 minutes after last image readout
- Expert observers visually validating + reporting
 - Typical reporting latency for NEO candidates or follow-up tracklets is ~10 minutes after last image
- Built-in follow-up capability.
 - Dedicated follow-up telescopes available; survey telescopes can be re-tasked
 - Try to get a 2+ hour arc on all same-night discoveries, and additional obs on very fast (>10 deg/day) NEO candidates
 - Impact probability (IP) can be very low for an impactor's discovery tracklet. Followup quickly exposes higher IP

CSS attributes: cadence + detection

- Survey fields get 4 visits, revisit interval (TTI) of ~8 minutes. Discovery tracklets are short, <30 min.
- Lunation plan for G96:
 - +60 to -25 Declination, solar elongation >80 deg. (12 nights)
 - Additional survey sets at evening and morning near-Sun sweet spots (~2 nights)
 - "Opposition blitz" campaigns: (4 nights/lunation)
- Detection software tuned to maximize efficiency at ~1 deg/day (for H<22 NEOs), but sensitive from ~0.1 ~15 deg/day.
- Detection software tolerates significant acceleration or centroiding errors
- No trail-fitting (yet)

Veres et. al (2009) told us where to look for imminent impactors (Fig. 14 from Detection of Earth-impacting asteroids with the next generation all-sky surveys)

Bright imminent impactors cluster near opposition westward of opposition

Fig. 14.— (top) Sky-plane probability distribution for 3 m diameter impactors (bolides) 1 day before impact with no restrictions on brightness and apparent motion. (bottom) Same as above but with V < 22.7 and apparent motion < 12 deg/day. Approximate PS1 search regions are shown as solid rectangles (the opposition region is in the center and the sweet spots are on the left and right). The position of 2008 TC₃ at discovery by the Catalina Sky Survey is highlighted.

In 2022, we now have a sample size of 6!

All six impactors discovered within a ~1200 deg² area just west of opposition

All six impactors were V~19 or brighter at discovery

In 2022, we now have a sample size of 6!

All six impactors discovered within a ~1200 deg² area just west of opposition

All six impactors were V~19 or brighter at discovery

Blue box shows G96 approximate monthly field of regard (~1x per lunation)

Green box shows G96 "opposition blitz" field of regard (additional ~2x per lunation)

2022 WJ1

- Successful imminent impactor scenario! Detection, follow-up, impact warning, some characterization observations(?), even warning people near the impact zone
- Additional serendipitous entry observations all-sky and security cameras; falling meteorites detected by doppler weather radar
- First "real-time" impactor for CSS Scout alert was published during the Arizona nighttime
 - CSS reported 6 additional tracklets (vs. 1-2 for previous impactors)
 - Collected 10-min time-series photometry sequence from I52, analysis ongoing
- CSS internal Slack channel was busy that night

2022 WJ1 timeline

- 04:53 05:18 G96 survey images obtained
- 05:26 G96 reports C8FF042

- 05:31 C8FF042 posted to NEOCP
- 05:35 first G96 follow-up begins
- 05:38 first Scout alert received
- 05:40 first G96 follow-up reported

- 05:44 station 734 begins follow-up observations
- 05:47 first NEOScan alert received
- 06:10 Scout 1.00 impact probability alert received
- 06:24 Public postings to neo-observe and mpml
- 06:25 reported from Schmidt untargeted detection
- 06:38 initiated handoff to ATLAS
- additional obs from H36, U52, G96, T12, I41
- 08:28 impact near Brantford, Ontario, Canada

Where are the meteorites? Infrasound detection? Any other unpublished data?

https://neofixer.arizona.edu

- NEOfixer is a NEO follow-up brokering service for observers
- NEOfixer goals:
 - Improve the NEO orbit catalog, from a planetary defense perspective
 - Provide NEO follow-up observers with current customized recommendations
 - Foster coordination among follow-up observers
- NEOfixer considers and scores all cataloged NEOs and all NEOCP/PCCP objects
- Object priorities are dynamic, changing throughout the night
- Orbits, ephemerides + uncertainties are independently calculated by Find_Orb

NASA

argets	Status FA	Q API (Contact															eric	Log ou	it Regis	ter	Search site	t.		۹
Targ	ets (I	52)																							
Filters: Showing 1 to 100 of 1,651 entries											~								Те	lescope:	e 152 ~				
Column	visibility -	CSV Print	PDF																	Previous	12	34	5	17 Ne	ext
Show 100	entries																					Search:			
Packed	Object		N Priority	Score	Cost (min) 🐄	Import ∿	Urgency	RA (hr) 1∜	Dec. (°) %	Mag. (V) %-	Uncert. (°) ∿	Rate ("/min) №	Elong. (°) %	GC ↑ŀ	Last Obs. ↑∿	Arc Length 1№	RMS (") 1%-	U %	H N	MOID (AU) 🕆	NEO ∜ŀ	Impact N-	Status	Interes	st ∜∳
C8L5CQ2	C8L5CQ2			10.85	6	33	75.2	12:19:48	+51:12:42	19.6	1.0592	8.4	99	0	1.2d	2.2h	0.4	11.9	23.	0 0.018	100				-
C8L5EE2	C8L5EE2		very high	8.42	6	71	1.9	23:17:39	+38:26:24	20.9	0.0498	4.5	104	2	11.5h	2.4h	0.2	12.4	21.	7 0.005	96	i an statistica i de la constatistica de la co			
P21CjeL	P21CjeL		very high	8.21	14	31	1.3	01:47:21	+44:09:39	20.9	0.2723	2.8	132	2	11d	3.1h	0.1	10.8	23.0	0 0.027	100				
K21J04L	2021 JL4		high	n 7.88	10	35	0.8	07:57:49	-04:10:32	20.2	0.3347	6.1	133	2	1.5y	20d	0.3	7.1	23.2	2 0.010	100				
K22W11U	2022 WU11		high	n 7.75	3	16	0.7	06:42:17	+38:33:39	19.5	0.0760	15.0	157	1	13d	2.0d	0.4	9.3	25.3	3 0.008	100				-
N00kxn7	N00kxn7		high	7.69	45	64	4.0	08:07:46	-37:01:54	17.8	2.0048	1.7	108	11	18d	12.5h	0.4	12.4	18.7	7 0.112	87	i de la competencia de la comp			
P11Coaw	P11Coaw		high	7.53	36	21	1.5	01:00:32	+35:04:11	21.8	0.4303	1.1	123	1	10d	4.1h	0.1	11.8	19.7	7 0.410	42				
P21CnH6	P21CnH6		high	n 7.53	37	34	1.1	23:31:44	+34:51:17	21.9	0.2743	0.3	105	1	11d	3.1h	0.2	11.8	19.5	5 0.255	52	i and i state			-
C8L5E52	C8L5E52		high	n 7.07	208	9	86.3	22:58:04	+39:30:43	21.2	5.3255	3.9	101	2	13.9h	0.5h	0.0	12.5	26.6	6 0.009	100	i and i state			-
K20X01F	2020 XF1		high	n 7.00	122	23	1.0	23:51:59	+21:20:21	22.3	0.7432	5.0	105	0	1.9y	29d	0.4	7.3	21.7	7 0.183	100	i and i state			
K04G00A	2004 GA		med-high	6.93	34	64	0.2	06:44:58	+49:23:02	21.1	0.7325	0.9	149	1	18y	71d	0.5	5.3	20.2	2 0.048	100	i and i state			-
K08V14G	2008 VG14		med-high	6.60	148	23	0.9	23:06:12	+04:59:08	22.5	0.6302	2.6	89	0	14y	53d	0.5	5.7	20.5	5 0.302	100	i and i state			
K18J00E	2018 JE		med-high	6.58	43	49	1.0	21:56:36	-10:29:00	22.1	0.0655	2.7	67	0	4.5y	47d	0.4	5.7	20.9	9 0.058	100				
mor1426	mor1426		med-high	6.58	26	11	0.3	05:06:31	+11:02:10	21.3	0.2892	0.5	168	2	11d	1.2d	0.5	11.3	22.5	5 0.328	46				
K22W08T	2022 WT8		med-high	6.55	2	25	0.5	08:33:28	+40:20:31	19.9	0.0031	3.2	136	0	13d	2.0d	0.2	9.1	21.5	5 0.170	100				
K21L04J	2021 LJ4		med-high	6.49	394	45	0.2	13:37:59	-17:22:54	22.1	0.7712	2.3	52	1	1.5y	4.3d	0.1	9.3	20.0	0 0.129	100				
K21X04S	2021 XS4		med-high	6.45	146	9	1.9	07:53:27	-11:17:21	20.7	2.2429	21.0	129	4	· 1.0y	3.9d	0.3	7.2	26.0	0 0.032	100	i and i state			
KØ1R17X	2001 RX17		med-high	6.43	81	26	1.0	23:40:03	-17:07:45	22.3	0.2351	2.4	88	0	21y	119d	0.5	4.8	20.5	5 0.258	100	i and i state			
K18R08R	2018 RR8		med-high	6.37	142	36	1.0	22:22:34	-21:23:03	22.5	0.1716	2.2	69	0	4.1y	54d	0.3	6.0	19.3	2 0.251	100				-
C8L4RT2	C8L4RT2		med-high	6.36	5	11	0.7	01:25:41	+47:29:19	20.4	0.0095	14.0	128	2	14.2h	21.1h	0.3	8.6	26.1	0.012	100				
K15HH1P	2015 HP171		med-high	6.32	22	36	1.0	23:01:50	-25:51:22	21.7	0.0410	4.2	76	0	7.0y	220d	0.4	4.5	20.1	0.188	100				-
K22X000	2022 XQ		med-high	6.28	3	38	1.4	14:01:02	+49:24:56	20.4	0.0005	16.8	85	0	2.7d	8.6d	0.3	9.9	21.	9 0.046	100			-	-

- Each object has a page with:
 - Plot showing NEOfixer priority score and sub-scores for the next week
 - Orbital elements from Find Orb
 - Scoring breakdown
 - Ephemeris
 - Benefit plot
 - Observations
 - Residuals
 - Orbit viewer
- Site (500) has all objects; topocentric sites only link to objects visible from that site

- Primarily geared toward NEO follow-up observers, but site is open to the public
- Create and account and input site, telescope and instrumentation information for customized results
- Website is configurable filters, columns, ordering
- API also available to programmatically fetch recommended target names, ephemerides, uncertainty information, exposure times
- Primary data source is MPC-provided astrometry. Auxiliary data sources include Scout, Sentry, NHATS, JPL radar astrometry.
- Other sources can be added (e.g. other impact monitoring services)
- Sites can communicate observing status (may observe, will observe, observing, observed, reported, canceled). Status messages change objects' priority for other sites

Calculate and combine *five independent quantities*:

Per object:

- Importance of each NEO / NEOCP object
 - How large (H); how close (MOID), potential impacts or other interest?
- Confidence that the object exists + linkage is correct
 - How reputable is the submitter; confirming observations?

Per observation:

- Cost to observe
 - Calculated per telescope+instrument+site combination
- Benefit to object's orbit
 - Sky-plane uncertainty as a proxy for orbital uncertainty
- Urgency to observe
 - Becoming easier or more difficult to observe? What are other sites' intentions?

2008 TC3 – impact alert somewhat delayed

2019 MO – no impact alert

2014 AA – impact alert delayed

2022 EB5 – prompt impact alert

2022 WJ1 – prompt impact alert

2018 LA – impact alert delayed

Conclusion

- CSS survey design enables imminent impactor detection
 - Prompt processing, validation and reporting
 - Sensitive to accelerating objects
 - Frequent visits to area west of opposition
- NEOfixer (<u>https://neofixer.arizona.edu</u>):
 - Customized NEO follow-up recommendations for any observer
 - Follow-up coordination framework
 - Imminent impactors are elevated in priority
- Contact me at <u>eric@arizona.edu</u> for questions about CSS, NEOfixer, or to be added to the <u>neo-observe@list.arizona.edu</u> email list