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Feasibility study of G&CNETs on quadcopters (SIMULATION)

Applying G&CNETs on quadcopters (REAL FLIGHTS)

Feasibility study of G&CNETs for spacecraft rendezvous using
the Backward Generation of Optimal Samples (SIMULATION)

Working towards time-optimal flight using G&CNETs on
guadcopters (REAL FLIGHTS)



General overview

G&CNETs: and Networks
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Power-optimal quadrotor flight

Robin Ferede
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This Photo by Unknown Author is licensed under CC BY-NC-ND


https://www.thedigeon.com/it/robot/aria/nuovo-parrot-bebop-drone-leggero-e-potente.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

Power optimal control

T
minimize J(u,7T) = f |[u(2)||*dt
l.l.,T 0

subjectto x = f(x,u)
x(0) = xg
x(T)eS
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Results Master Thesis

1: Identification of unmodeled effects

Simulation Flight Test
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Results Master Thesis

1: Identification of unmodeled effects

Roll Moment Pitch Moment Yaw Moment
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Results Master Thesis

2. Adaptive control strategy

= New Network
= 3 extra Inputs
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3 hidden layers

20 inputs

' 120 neurons
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RelLU

Sigmoid
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Results Master Thesis

2. Adaptive control strategy

Non-Adaptive
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Results Master Thesis

t = 0.0 Bong Bang
G&CNet

3: Benchmark Flight performance
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Results Master Thesis

We have shown..
= G&CNet Is feasible

= Significance of unmodeled moments
= Improved performance for adaptive method

= Capabilities of high speed flight
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Time-optimal quadrotor flight

Sebastien Origer

]
TUDelft @

This Photo by Unknown Author is licensed under CC BY-NC-ND


https://www.thedigeon.com/it/robot/aria/nuovo-parrot-bebop-drone-leggero-e-potente.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

Real flight data:

Power-optimal control

tr
Ji (e, tf,u(t)) = (1- e)+ € J Z u,(t)2 dt
Time-optimal objective -

Power-optimal objective



Current work

Does the reality gap reside in an inaccurate dynamics model or

Use of G&CNETSs in combination with online system identification: adaptive solution

Experiments with different cost functions: 2 consecutive gates, add term for robustness
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Asteroid belt (

Nominal trajectory

Spacecraft guidance and control

Sebastien Origer
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G&CNETs for spacecraft

v" Onboard use of GCNETSs is proven to work on quadrotors

= More difficult OCP (less deterministic than space dynamics)

v In case of space dynamics: time to generate training dataset can be severely reduced:
Simple ODEs

l

Solve optimal control problem with Pontryagin’s Maximum Principle

l

Benefit from the ‘Backward Generation of Optimal Samples’ method
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Animation illustrating the
'Backward Generation of Optimal Samples’

Based on:
Neural representation of a time optimal, constant acceleration rendezvous
Dario Izzo, Sebastien Origer



Results G&CNETS (Simulation)

9 different nominal trajectories (Axis unitis AU) — -1

Applied Backward Generation of Optimal

Samples

Trained G&CNETSs

Validated networks in simulation:

Final position error

< 500,000 km

Final velocity error
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< 100 m/s
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Networks can also learn the value function

N(r, v) =Tof (Time of Flight)
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Fig. 6. Error on the training/test set.
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Where did we start? Where are we now?

» Started:
= GCNETSs only in simulation
» Now:
= G&CNETSs proven to work onboard quadcopters and can be made adaptive

= G&CNETSs are a solution to autonomous onboard guidance and control which requires low computational cost
during inference

= Efficient data augmentation technique for complex low-thrust interplanetary missions (training datasets were
generated in under a minute)

= G&CNETs meet operational requirements for interplanetary missions in terms of accuracy

= Methodology can also be used to train networks to predict the value function, which is of interest for preliminary
mission designs

» Future:
= Time-optimal quadcopter flight using G&CNETs
= Study asymptotic behaviour of G&CNETs
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Thank you for your attention

Robin Ferede & Sebastien Origer
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