

Automated Material Design

A new paradigm for smart structures in the space environment

Derek Aranguren van Egmond Dominik Dold

Advanced Concepts Team, TEC-SF, European Space Agency

ESA UNCLASSIFIED – Releasable to the Public

The Future In Reach

Our Sci-Fi future in space is not too far off now...

- ESA already making great strides on in-space manufacturing
- Technologies to augment ISM already exist & are advancing rapidly:
 - Exotic 3D printing feedstocks
 - Functional materials
 - Soft robotics
 - Dynamic, programmable structures

Architected Materials

Exploring untapped material property spaces through geometry and chemistry

Source: ESA x Skidmore, Owings & Merrill

P

Extreme Mechanics in Al₂O₃ Nano-lattices

Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

*

Extreme Mechanics in Al₂O₃ Nano-lattices

Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

Functional Lattice Materials

The promise of 3D printing: "Robotic Metamaterials"

Cui, H. *et al.* Design and printing of proprioceptive three-dimensional architected robotic metamaterials. *Science* **376**, 1287–1293 (2022).

Functional Lattice Materials

The promise of 3D printing: "Robotic Metamaterials"

Cui, H. *et al.* Design and printing of proprioceptive three-dimensional architected robotic metamaterials. *Science* **376**, 1287–1293 (2022).

*

Structural lattice materials exist **all throughout** biology

Tensile Properties of Disordered Honeycombs

Crack direction and stiffness changes drastically with small change in disorder

8x speed

Aranguren van Egmond, D. *et al.* The benefits of structural disorder in natural cellular solids. *arXiv:2110.04607* [cond-mat, physics:physics] (2021), Under Review

Computing on Lattices: Property Prediction

Dold, D., Aranguren van Egmond, D., et al.: Differentiable graph-structured models for inverse design of lattice materials, *In prep.*

Inverse design using differentiable graphs

Dold, D., Aranguren van Egmond, D., et al.: Differentiable graph-structured models for inverse design of lattice materials, *In prep.*

Inverse design using differentiable graphs

Dold, D., Aranguren van Egmond, D., et al.: Differentiable graph-structured models for inverse design of lattice materials, *In prep.*

Inverse design using differentiable graphs

→ THE EUROPEAN SPACE AGENCY

From Graphs to Optical Nanomaterials

Not just for mechanical properties!

Example: Inverse Design of Optical Band-pass Filter

Gómez, P., Toftevaag, H. H., Bogen-Storø, T., <u>Aranguren van Egmond, D.</u> & Llorens, J. M. NIDN: Neural Inverse Design of Nanostructures. Preprint at <u>http://arxiv.org/abs/2208.05480</u> (2022), *Under Review*

💿 🛌 📕 💥 🛨 🔚 📥 🔤 🍁 → THE EUROPEAN SPACE AGENCY

From Graphs to Optical Nanomaterials

Not just for mechanical properties!

Example: Inverse Design of Optical Band-pass Filter

Gómez, P., Toftevaag, H. H., Bogen-Storø, T., <u>Aranguren van Egmond, D.</u> & Llorens, J. M. NIDN: Neural Inverse Design of Nanostructures. Preprint at <u>http://arxiv.org/abs/2208.05480</u> (2022), *Under Review*

Reconfigurable Spacecraft

The future: self-assembly?

Source: Ekblaw, A., MIT space exploration initiative

The future:

self-configuration?

Source: Nisser, M., MIT space exploration initiative

Thank you!

Functional Lattice Materials

Robotic experiments: accelerated discovery of efficient lattice topologies

Gongora, A. E. *et al.* A Bayesian experimental autonomous researcher for mechanical design. *Sci. Adv.* **6**, eaaz1708 (2020).

Autonomous material design based on <u>Bayesian ML</u> + mechanical experiments

- Intelligent-throughput data generation
- BO compares <u>real</u> mechanical performance based on variation of unit-cell parameters

→ THE EUROPEAN SPACE AGENCY

Validation of FE solver for lattice materials

Analytical models vs. simulated elasticity results

Re-configuring and optimizing honeycombs for stiffness

Cellular structure of **wood** (pinewood bark)

Kretschmann, D. & Cramer, S. The role of earlywood and latewood properties on dimensional stability of loblolly pine. (2022).