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What is heyoka anyway?

heyoka is a software package for the numerical integration of
ODEs (ordinary differential equations) via Taylor's method

https://github.com/bluescarni/heyoka
https://github.com/bluescarni/heyoka.py
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Use in ACT projects

- G&CNETs + Backward Generation of Optimal Examples
- Poincaré maps classification

- Dark matter inversion

- EclipseNET

- Kelvins space debris competition



Why should | care?! | can use ...




Main motivations

Only one actively-maintained implementation of Taylor’s
method

Superior performance (speed & accuracy)

Unique features enabling novel applications
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The integration error can be constrained in a
mathematically-rigorous way

Free dense output with guaranteed precision
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Technical difficulties

How to compute the Taylor coefficients?

Basic recursion:

X (0 =F(x(®)
) = PO

Symbolic differentiation: cumbersome, error-prone, exponential complexity

Automatic differentiation (AD) to the rescue:

1. decompose f(x(t)) into a graph of elementary subexpressions

2. apply AD rules on the subexpressions

However, the implementation is technically very challenging



heyoka - The sales pitch

- Novel implementation of Taylor's method based on a
just-in-time (JIT) compilation approach

- Batch mode to fully utilise modern vector instruction sets

- Support for coarse-grained and fine-grained automatic
parallelisation

- Support for extended-precision arithmetic
- Optimally accurate

- Support for reliable and accurate event-detection



Obligatory benchmark slide

Planetary three-body problem - tol = 1071
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Event detection

Detect specific conditions in the state of a system
Examples: collisions, spacecraft eclipse, Poincaré maps, ...
Events defined by an event equation: g(x) =0

E.g., collision of two spheres:

(X1 = X0)2 + (1 —Yo)* + (21 — 20)* = 4R* =0

Existing approaches leave much to be desired ...



There’s gotta be a better way...
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Event detection in Taylor’'s method
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Event detection in Taylor’'s method

Taylor series of the event function (via AD):

1
g(t) = 9(to) + 9’ (to) (t — to) + 59" (to) (t - to)* + ...
Continuous, high-fidelity approximation of the event function
as a time polynomial

Rigorous polynomial root-finding algorithms to locate an
event’s tigger time

Use dense output to propagate the state of the system up to
the trigger time

"



Sneak peek - application to space debris

Goal: detection of collisions and/or close encounters
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Sneak peek - application to space debris

Goal: detection of collisions and/or close encounters
Main challenge: small bodies, moving fast

Preliminary results:

- Guaranteed collision detection for cm-sized objects
moving at km/s speeds

- No constraints on the integration timestep

- ~ 4 hours for ~ 20k objects, 20 years (64 cores)

Still a work-in-progress...
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Questions?



