
heyoka: Modern Numerical Integration and its
uses in Astrodynamics and Spaceflight
Mechanics

Francesco Biscani
September 14, 2022

European Space Operations Centre (ESOC)



What is heyoka anyway?

heyoka is a software package for the numerical integration of
ODEs (ordinary differential equations) via Taylor’s method

https://github.com/bluescarni/heyoka
https://github.com/bluescarni/heyoka.py

1

https://github.com/bluescarni/heyoka
https://github.com/bluescarni/heyoka.py


Use in ACT projects

• G&CNETs + Backward Generation of Optimal Examples
• Poincaré maps classification
• Dark matter inversion
• EclipseNET
• Kelvins space debris competition

2



Why should I care?! I can use …

3



Main motivations

Only one actively-maintained implementation of Taylor’s
method

Superior performance (speed & accuracy)

Unique features enabling novel applications

4



Taylor’s method

Initial value problem: x′ (t) = f (x (t))
x (t0) = x0

Construct the Taylor series of the solution around t = t0:

x (t1) = x (t0) + x′ (t0) (t1 − t0) +
1
2x

′′ (t0) (t1 − t0)2 + . . .

The integration error can be constrained in a
mathematically-rigorous way

Free dense output with guaranteed precision

5



Taylor’s method

Initial value problem: x′ (t) = f (x (t))
x (t0) = x0

Construct the Taylor series of the solution around t = t0:

x (t1) = x (t0) + x′ (t0) (t1 − t0) +
1
2x

′′ (t0) (t1 − t0)2 + . . .

The integration error can be constrained in a
mathematically-rigorous way

Free dense output with guaranteed precision

5



Taylor’s method

Initial value problem: x′ (t) = f (x (t))
x (t0) = x0

Construct the Taylor series of the solution around t = t0:

x (t1) = x (t0) + x′ (t0) (t1 − t0) +
1
2x

′′ (t0) (t1 − t0)2 + . . .

The integration error can be constrained in a
mathematically-rigorous way

Free dense output with guaranteed precision

5



Taylor’s method

Initial value problem: x′ (t) = f (x (t))
x (t0) = x0

Construct the Taylor series of the solution around t = t0:

x (t1) = x (t0) + x′ (t0) (t1 − t0) +
1
2x

′′ (t0) (t1 − t0)2 + . . .

The integration error can be constrained in a
mathematically-rigorous way

Free dense output with guaranteed precision

5



Technical difficulties

How to compute the Taylor coefficients?

Basic recursion:

x′ (t) = f (x (t))

x′′ (t) = ∂f (x (t))
∂x x′ (t)

. . .

Symbolic differentiation: cumbersome, error-prone, exponential complexity

Automatic differentiation (AD) to the rescue:

1. decompose f (x (t)) into a graph of elementary subexpressions
2. apply AD rules on the subexpressions

However, the implementation is technically very challenging

6



Technical difficulties

How to compute the Taylor coefficients?

Basic recursion:

x′ (t) = f (x (t))

x′′ (t) = ∂f (x (t))
∂x x′ (t)

. . .

Symbolic differentiation: cumbersome, error-prone, exponential complexity

Automatic differentiation (AD) to the rescue:

1. decompose f (x (t)) into a graph of elementary subexpressions
2. apply AD rules on the subexpressions

However, the implementation is technically very challenging

6



Technical difficulties

How to compute the Taylor coefficients?

Basic recursion:

x′ (t) = f (x (t))

x′′ (t) = ∂f (x (t))
∂x x′ (t)

. . .

Symbolic differentiation: cumbersome, error-prone, exponential complexity

Automatic differentiation (AD) to the rescue:

1. decompose f (x (t)) into a graph of elementary subexpressions
2. apply AD rules on the subexpressions

However, the implementation is technically very challenging

6



Technical difficulties

How to compute the Taylor coefficients?

Basic recursion:

x′ (t) = f (x (t))

x′′ (t) = ∂f (x (t))
∂x x′ (t)

. . .

Symbolic differentiation: cumbersome, error-prone, exponential complexity

Automatic differentiation (AD) to the rescue:

1. decompose f (x (t)) into a graph of elementary subexpressions
2. apply AD rules on the subexpressions

However, the implementation is technically very challenging

6



heyoka – The sales pitch

• Novel implementation of Taylor’s method based on a
just-in-time (JIT) compilation approach

• Batch mode to fully utilise modern vector instruction sets
• Support for coarse-grained and fine-grained automatic
parallelisation

• Support for extended-precision arithmetic
• Optimally accurate
• Support for reliable and accurate event-detection

7



Obligatory benchmark slide

8



Event detection

Detect specific conditions in the state of a system

Examples: collisions, spacecraft eclipse, Poincaré maps, …

Events defined by an event equation: g (x) = 0

E.g., collision of two spheres:

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 − 4R2 = 0

Existing approaches leave much to be desired …

9



Event detection

Detect specific conditions in the state of a system

Examples: collisions, spacecraft eclipse, Poincaré maps, …

Events defined by an event equation: g (x) = 0

E.g., collision of two spheres:

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 − 4R2 = 0

Existing approaches leave much to be desired …

9



Event detection

Detect specific conditions in the state of a system

Examples: collisions, spacecraft eclipse, Poincaré maps, …

Events defined by an event equation: g (x) = 0

E.g., collision of two spheres:

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 − 4R2 = 0

Existing approaches leave much to be desired …

9



Event detection

Detect specific conditions in the state of a system

Examples: collisions, spacecraft eclipse, Poincaré maps, …

Events defined by an event equation: g (x) = 0

E.g., collision of two spheres:

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 − 4R2 = 0

Existing approaches leave much to be desired …

9



Event detection

Detect specific conditions in the state of a system

Examples: collisions, spacecraft eclipse, Poincaré maps, …

Events defined by an event equation: g (x) = 0

E.g., collision of two spheres:

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 − 4R2 = 0

Existing approaches leave much to be desired …

9



There’s gotta be a better way...

10



Event detection in Taylor’s method

Taylor series of the event function (via AD):

g (t) = g (t0) + g′ (t0) (t− t0) +
1
2g

′′ (t0) (t− t0)2 + . . .

Continuous, high-fidelity approximation of the event function
as a time polynomial

Rigorous polynomial root-finding algorithms to locate an
event’s tigger time

Use dense output to propagate the state of the system up to
the trigger time

11



Event detection in Taylor’s method

Taylor series of the event function (via AD):

g (t) = g (t0) + g′ (t0) (t− t0) +
1
2g

′′ (t0) (t− t0)2 + . . .

Continuous, high-fidelity approximation of the event function
as a time polynomial

Rigorous polynomial root-finding algorithms to locate an
event’s tigger time

Use dense output to propagate the state of the system up to
the trigger time

11



Event detection in Taylor’s method

Taylor series of the event function (via AD):

g (t) = g (t0) + g′ (t0) (t− t0) +
1
2g

′′ (t0) (t− t0)2 + . . .

Continuous, high-fidelity approximation of the event function
as a time polynomial

Rigorous polynomial root-finding algorithms to locate an
event’s tigger time

Use dense output to propagate the state of the system up to
the trigger time

11



Event detection in Taylor’s method

Taylor series of the event function (via AD):

g (t) = g (t0) + g′ (t0) (t− t0) +
1
2g

′′ (t0) (t− t0)2 + . . .

Continuous, high-fidelity approximation of the event function
as a time polynomial

Rigorous polynomial root-finding algorithms to locate an
event’s tigger time

Use dense output to propagate the state of the system up to
the trigger time

11



Sneak peek - application to space debris

Goal: detection of collisions and/or close encounters

Main challenge: small bodies, moving fast

Preliminary results:

• Guaranteed collision detection for cm-sized objects
moving at km/s speeds

• No constraints on the integration timestep
• ∼ 4 hours for ∼ 20k objects, 20 years (64 cores)

Still a work-in-progress…

12



Sneak peek - application to space debris

Goal: detection of collisions and/or close encounters

Main challenge: small bodies, moving fast

Preliminary results:

• Guaranteed collision detection for cm-sized objects
moving at km/s speeds

• No constraints on the integration timestep
• ∼ 4 hours for ∼ 20k objects, 20 years (64 cores)

Still a work-in-progress…

12



Sneak peek - application to space debris

Goal: detection of collisions and/or close encounters

Main challenge: small bodies, moving fast

Preliminary results:

• Guaranteed collision detection for cm-sized objects
moving at km/s speeds

• No constraints on the integration timestep
• ∼ 4 hours for ∼ 20k objects, 20 years (64 cores)

Still a work-in-progress…

12



Sneak peek - application to space debris

Goal: detection of collisions and/or close encounters

Main challenge: small bodies, moving fast

Preliminary results:

• Guaranteed collision detection for cm-sized objects
moving at km/s speeds

• No constraints on the integration timestep
• ∼ 4 hours for ∼ 20k objects, 20 years (64 cores)

Still a work-in-progress…

12



Questions?

12


