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What is heyoka anyway?

heyoka is a software package for the numerical integration of
ODEs (ordinary differential equations) via Taylor’s method

https://github.com/bluescarni/heyoka
https://github.com/bluescarni/heyoka.py

1

https://github.com/bluescarni/heyoka
https://github.com/bluescarni/heyoka.py


Use in ACT projects

• G&CNETs + Backward Generation of Optimal Examples
• Poincaré maps classification
• Dark matter inversion
• EclipseNET
• Kelvins space debris competition
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Why should I care?! I can use …
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Main motivations

Only one actively-maintained implementation of Taylor’s
method

Superior performance (speed & accuracy)

Unique features enabling novel applications
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Taylor’s method

Initial value problem: x′ (t) = f (x (t))
x (t0) = x0

Construct the Taylor series of the solution around t = t0:

x (t1) = x (t0) + x′ (t0) (t1 − t0) +
1
2x

′′ (t0) (t1 − t0)2 + . . .

The integration error can be constrained in a
mathematically-rigorous way

Free dense output with guaranteed precision
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Technical difficulties

How to compute the Taylor coefficients?

Basic recursion:

x′ (t) = f (x (t))

x′′ (t) = ∂f (x (t))
∂x x′ (t)

. . .

Symbolic differentiation: cumbersome, error-prone, exponential complexity

Automatic differentiation (AD) to the rescue:

1. decompose f (x (t)) into a graph of elementary subexpressions
2. apply AD rules on the subexpressions

However, the implementation is technically very challenging
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heyoka – The sales pitch

• Novel implementation of Taylor’s method based on a
just-in-time (JIT) compilation approach

• Batch mode to fully utilise modern vector instruction sets
• Support for coarse-grained and fine-grained automatic
parallelisation

• Support for extended-precision arithmetic
• Optimally accurate
• Support for reliable and accurate event-detection

7



Obligatory benchmark slide
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Event detection

Detect specific conditions in the state of a system

Examples: collisions, spacecraft eclipse, Poincaré maps, …

Events defined by an event equation: g (x) = 0

E.g., collision of two spheres:

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 − 4R2 = 0

Existing approaches leave much to be desired …
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There’s gotta be a better way...

10



Event detection in Taylor’s method

Taylor series of the event function (via AD):

g (t) = g (t0) + g′ (t0) (t− t0) +
1
2g

′′ (t0) (t− t0)2 + . . .

Continuous, high-fidelity approximation of the event function
as a time polynomial

Rigorous polynomial root-finding algorithms to locate an
event’s tigger time

Use dense output to propagate the state of the system up to
the trigger time
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Sneak peek - application to space debris

Goal: detection of collisions and/or close encounters

Main challenge: small bodies, moving fast

Preliminary results:

• Guaranteed collision detection for cm-sized objects
moving at km/s speeds

• No constraints on the integration timestep
• ∼ 4 hours for ∼ 20k objects, 20 years (64 cores)

Still a work-in-progress…
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Questions?
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