heyoka: Modern Numerical Integration and its
uses in Astrodynamics and Spaceflight
Mechanics

Francesco Biscani
September 14, 2022

European Space Operations Centre (ESOC)

What is heyoka anyway?

heyoka is a software package for the numerical integration of
ODEs (ordinary differential equations) via Taylor's method

https://github.com/bluescarni/heyoka
https://github.com/bluescarni/heyoka.py

Heyo)la

https://github.com/bluescarni/heyoka
https://github.com/bluescarni/heyoka.py

Use in ACT projects

- G&CNETs + Backward Generation of Optimal Examples
- Poincaré maps classification

- Dark matter inversion

- EclipseNET

- Kelvins space debris competition

Why should | care?! | can use ...

Main motivations

Only one actively-maintained implementation of Taylor’s
method

Superior performance (speed & accuracy)

Unique features enabling novel applications

Taylor’s method

Initial value problem:

{x’(t) — F(x(1)

X(to) = X0

Taylor’s method

Initial value problem:

{x’(t) — F(x(1)

X(to) = X0

Construct the Taylor series of the solution around t = tg:

X(t) = X (to) + X (t0) (t1 — to) + " (t0) (& — to)? + ...

Taylor’s method

Initial value problem:

X (1) =fx®)

X(to) = X0

Construct the Taylor series of the solution around t = tg:
1
x(t1) = X (to) + X (to) (t1 — to) + 5x" (to) (t1 - to)’ +...

The integration error can be constrained in a
mathematically-rigorous way

Taylor’s method

Initial value problem:

X (1) =fx®)

X(to) = X0

Construct the Taylor series of the solution around t = tg:
1
x(t1) = X (to) + X (to) (t1 — to) + 5x" (to) (t1 - to)’ +...

The integration error can be constrained in a
mathematically-rigorous way

Free dense output with guaranteed precision

Technical difficulties

How to compute the Taylor coefficients?

Technical difficulties

How to compute the Taylor coefficients?

Basic recursion:

Technical difficulties

How to compute the Taylor coefficients?

Basic recursion:

X (t) =f(x(1)

(= 2EDy

Symbolic differentiation: cumbersome, error-prone, exponential complexity

Technical difficulties

How to compute the Taylor coefficients?

Basic recursion:

X (0 =F(x(®)
) = PO

Symbolic differentiation: cumbersome, error-prone, exponential complexity

Automatic differentiation (AD) to the rescue:

1. decompose f(x(t)) into a graph of elementary subexpressions

2. apply AD rules on the subexpressions

However, the implementation is technically very challenging

heyoka - The sales pitch

- Novel implementation of Taylor's method based on a
just-in-time (JIT) compilation approach

- Batch mode to fully utilise modern vector instruction sets

- Support for coarse-grained and fine-grained automatic
parallelisation

- Support for extended-precision arithmetic
- Optimally accurate

- Support for reliable and accurate event-detection

Obligatory benchmark slide

Planetary three-body problem - tol = 1071

2500

2000 1

1500 4

Runtime (ms)

1000 4

500 4

04
heyoka Vemn9 Feaginl4 DP8 Boost.ODEInt heyoka Vern9 Feaginl4 DP8
(RKF78) (dense output)(dense output)(dense output)(dense output)
1074
1051 9.37¢-06
1076 4
0 2.99e-07
E g
5 1074 5.93e-08 6.68e-08
&
1078 4

4.97e-09

10-9 4

heyoka Vern9 Feaginl4 DP8 Boost.ODEInt
(RKF78)

Event detection

Detect specific conditions in the state of a system

Event detection

Detect specific conditions in the state of a system

Examples: collisions, spacecraft eclipse, Poincaré maps, ...

Event detection

Detect specific conditions in the state of a system
Examples: collisions, spacecraft eclipse, Poincaré maps, ...

Events defined by an event equation: g(x) =0

Event detection

Detect specific conditions in the state of a system
Examples: collisions, spacecraft eclipse, Poincaré maps, ...
Events defined by an event equation: g(x) =0

E.g., collision of two spheres:

(X1 = X0)2 + (1 —Yo)* + (21 — 20)* = 4R* =0

Event detection

Detect specific conditions in the state of a system
Examples: collisions, spacecraft eclipse, Poincaré maps, ...
Events defined by an event equation: g(x) =0

E.g., collision of two spheres:

(X1 = X0)2 + (1 —Yo)* + (21 — 20)* = 4R* =0

Existing approaches leave much to be desired ...

There’s gotta be a better way...

10

Event detection in Taylor’'s method

Taylor series of the event function (via AD):

g(t) =g (to) + 9" (to) (t — to) + %g” (to) (= to)* + ...

"

Event detection in Taylor’'s method

Taylor series of the event function (via AD):

g(t) =g (to) + 9" (to) (t — to) + %g” (to) (= to)* + ...

Continuous, high-fidelity approximation of the event function
as a time polynomial

"

Event detection in Taylor’'s method

Taylor series of the event function (via AD):

g(t) =g (to) + 9" (to) (t — to) + %g” (to) (= to)* + ...

Continuous, high-fidelity approximation of the event function
as a time polynomial

Rigorous polynomial root-finding algorithms to locate an
event’s tigger time

"

Event detection in Taylor’'s method

Taylor series of the event function (via AD):

1
g(t) = 9(to) + 9’ (to) (t — to) + 59" (to) (t - to)* + ...
Continuous, high-fidelity approximation of the event function
as a time polynomial

Rigorous polynomial root-finding algorithms to locate an
event’s tigger time

Use dense output to propagate the state of the system up to
the trigger time

"

Sneak peek - application to space debris

Goal: detection of collisions and/or close encounters

12

Sneak peek - application to space debris

Goal: detection of collisions and/or close encounters

Main challenge: small bodies, moving fast

12

Sneak peek - application to space debris

Goal: detection of collisions and/or close encounters
Main challenge: small bodies, moving fast

Preliminary results:

- Guaranteed collision detection for cm-sized objects
moving at km/s speeds

- No constraints on the integration timestep

- ~ 4 hours for ~ 20k objects, 20 years (64 cores)

12

Sneak peek - application to space debris

Goal: detection of collisions and/or close encounters
Main challenge: small bodies, moving fast

Preliminary results:

- Guaranteed collision detection for cm-sized objects
moving at km/s speeds

- No constraints on the integration timestep

- ~ 4 hours for ~ 20k objects, 20 years (64 cores)

Still a work-in-progress...

12

Questions?

