

ADHA - Advanced Data Handling Architecture

Kostas Marinis On-board Computers & Data Handling TEC-EDD, D/TEC

*

24/10/2022

ESA UNCLASSIFIED - For ESA Official Use Only

1. Introduction of the ADHA Program

- 1. Technical context
- 2. Objective of the ADHA Program
- 3. Steps of the ADHA Program

2. ADHA Hardware Configurations

3. Development activities of ADHA Units and Modules

- 1. Units
- 2. Modules
- 3. Connectors
- 4. Conclusion

1. Introduction of the ADHA Program

- 1. Technical context
- 2. Objective of the ADHA Program
- 3. Steps of the ADHA Program
- 2. ADHA Hardware Configurations

3. Development activities of ADHA Units and Modules

- 1. Units
- 2. Modules
- 3. Connectors
- 4. Conclusion

Technical Context

MetOp-SG EFM @ Airbus DS Toulouse

Technical Context

1. Introduction of the ADHA Program

- Technical context
- 2. Objective of the ADHA Program
- 3. Steps of the ADHA Program
- 2. ADHA Hardware Configurations

3. Development activities of ADHA Units and Modules

- 1. Units
- 2. Modules
- 3. Connectors
- 4. Conclusion

Develop a new generation of Platform and Payload Data Handling units, based on standardized, interoperable and inter-changeable modules that can be potentially procured from different suppliers, using latest micro-electronics technologies, and be integrated by different ADHA Unit integrators.

The need for module standardization (to meet the ESA Technology Development Targets) associated to new technologies (multicore processors, ML/AI, COTS, etc.) will make ADHA a disruptive approach to obtain in 3 years highly integrated and scalable units ready to fly (TRL 6).

TARGET 130% improvement ofspacecraft development timeby 2023	TARGET 2One order of magnitudeimprovement of costefficiency with everygeneration
TARGET 3	TARGET 4
30% faster development and	Inverting Europe's
<u>adoption</u> of <u>innovative</u>	contribution to space <u>debris</u>
technology	by 2030

ESA Technology Development Targets

1. Introduction of the ADHA Program

- 1. Technical context
- 2. Objective of the ADHA Program
- 3. Steps of the ADHA Program
- 2. ADHA Hardware Configurations

3. Development activities of ADHA Units and Modules

- 1. Units
- 2. Modules
- 3. Connectors
- 4. Conclusion

Steps of the ADHA Program

Part 1: ADHA documentation preparation -> ADHA-2 study Phase 1

Full set of contractual, technical, PA and environmental documentation, including specs at Unit, Module and Backplane levels Part 2: ADHA product development (Unit/Module/backplane/connector). -> ADHA-2 study Phase 2 + several R&D contracts

Overview will follow

To achieve the ADHA objectives, 2 industrial consortia were formed, both interacting with ESA:

1. Introduction of the ADHA Program

- 1. Technical context
- 2. Objective of the ADHA Program
- 3. Steps of the ADHA Program
- 2. ADHA Hardware Configurations
- **3.** Development activities of ADHA Units and Modules
 - 1. Units
 - 2. Modules
 - 3. Connectors
- 4. Conclusion

ADHA HW Configuration – Units and Modules

An ADHA Unit will host up to 13 modules (incl. redundancy) in a cPCI-Serial-Space (cPCI-S-S) 6U or 3U rack and interconnection backplane

- Standardized mechanical form factors,
- Standardized electrical and communication interfaces (intra-unit), via ADHA backplane

Each ADHA unit may consist of different modules, depending on configuration:

- System Controller (OBC modules),
- Power module,
- Mass Memory module,
- High performance Payload Data Processing module,
- AOCS module,
- GNSS module,
- Propulsion control module,
- Generic I/O,
- other peripheral modules

ADHA Units (6U and 3U)

ADHA Module

1. Introduction of the ADHA Program

- 1. Technical context
- 2. Objective of the ADHA Program
- 3. Steps of the ADHA Program

2. ADHA Hardware Configurations

3. Development activities of ADHA Units and Modules 1. Units 2. Modules

3. Connectors

4. Conclusion

ADHA HW Development – ADHA Units and Modules (1/2)

Development of the first ADHA-U1 EM unit (ADHA-2 study (phase 2) and TDE activities)

Development of several EM ADHA 6U modules – TDE WP21/22

- 6U ADHA Power Module
- 6U ADHA OBC Module
- 6U ADHA Mass Memory Module

MAIT of the 6U ADHA-U1 EM unit (one unit per consortia) - ADHA-2 study.

Study about mechanical and thermal design of ADHA units (GSTP with Beyond Gravity)

uRTU activity (GSTP with Beyond Gravity)

Development of an ADHA EM 3U Unit, with several ADHA EM 3U modules:

- ADHA Power Module; ADHA System Controller Module; ADHA Generic I/O Module;
- ADHA AOCS Module; Propulsion Control Module. MAIT of the EM 3U-ADHA-U1 unit

HiperPro Module (GSTP)

Development of an EM ADHA 6U high performance co-processing module

High Performance Compute Board (HPCB) Module (TDE with Cobham Gaisler)

EM ADHA 6U high performance processing module using Myriad chip

ADHA Units (6U and 3U)

ADHA Module

- ADHA GNSS Module, proposed for TDE WP23/24
- ADHA OBC Module based on COTS, proposed for TDE WP23/24
- ADHA Front End Electronic Modules, proposed for TDE WP23/24
- ADHA Instrument Power Distribution Module for ADHA ICU
- ADHA OBC Module based on the NanoXplore NG-ULTRA FPGA
- ADHA On-Board Processing Module based on RISC-V processor
- ADHA On-board data co-processing modules for high processing capability needs
- ADHA Motor Drive Electronic Modules for rotative part of payloads and/or platform Solar Array Drive.

1. Introduction of the ADHA Program

- 1. Technical context
- 2. Objective of the ADHA Program
- 3. Steps of the ADHA Program

2. ADHA Hardware Configurations

3. Development activities of ADHA Units and Modules

- 1. Units
- 2. Modules
- 3. Connectors
- 4. Conclusion

Procurement and Reliability Assessment of High Data Rate Press-Fit cPCI-Serial-Space (cPCI-S-S) Connectors, e.g. commercial AirMax®, HyperBits™S-FECT – On-going TDE activities -

Development of High Density Modular Electrical Interconnections for High Data Rate Applications

- Proposed for ARTES AT -
- Compatible with cPCI-S-S standard
- Enabling routing of HSSL channels
- Achieve interface bit rates of at least 25 Gbit/s, with a goal of 56Gb/s for long-term missions.

Board Interconnections for High Data Rate applications – Proposed for TDE WP23/24 – 250k€ Solderless interconnect solutions to support future high data rate requirements (56Gbps)

AirMax

HyperBits S-FECT

1. Introduction of the ADHA Program

- 1. Technical context
- 2. Objective of the ADHA Program
- 3. Steps of the ADHA Program

2. ADHA Hardware Configurations

3. Development activities of ADHA Units and Modules

- 1. Units
- 2. Modules
- 3. Connectors

4. Conclusions

Conclusion

- The aim of the ADHA program is to deliver in 2025 a new generation of Platform and Payload Data Handling units, based on standardized, inter-operable and inter-changeable modules from multiple suppliers (incl. SMEs and multiple sourcing) that can be integrated in ADHA units by different ADHA unit integrators.
- It is an ambitious project and a <u>unique</u> opportunity for the Satellite Electrical Engineering domain that will reduce cost & integration time, and allow to direct the resources on specific modules for new and challenging applications (Payloads).
- ADHA documents have been organized per levels with a top down approach (L0: ESA, L1: Units, L2: elements, L3: EGSEs.
- ADHA Unit requirements (L1) have been recently agreed among all ADHA parties. ADHA teams are currently working on ADHA Unit Elements requirements. The ADHA 2022 Workshop is planned (22-23 November 2022, ESTEC; <u>https://indico.esa.int/event/427/</u>) to present all ADHA documentation.
- HW development is starting at Unit, Module and connector levels.

Questions?

Feedback: Kostas.Marinis@esa.int

+

_