

GOMSPACE EXPERIENCE OF SAVOIR WITH THE JUVENTAS AND OTHER CUBESATS USING A TEST-DRIVEN DEVELOPMENT APPROACH

SAVOIR4Cubesats Workshop 2022

OUTLINE

- GOMSpace and CubeSat trends
- Where SAVOIR could help
- SAVOIR at GOMSpace
- Test-driven development approach

GOMSPACE AND SAVOIR

• Do we have a connection?

GOMSPACE AT A GLANCE

- Globally leading manufacturer & supplier of nanosatellite solutions
- Founded in 2007 and listed at Nasdaq stock exchange in Stockholm (GOMX) in 2016
- +220 employees strong in DK, LU, SE and FR and USA

• Our strengths:

- · Miniaturised satellites ready for constellations
- Radio technology / software defined radio
- Production capacity in place with +4000 products delivered annually
- Our traction:
 - Very successful in orbit validation program (GOMX)
 - Customers in more than 55 countries

GOMSPACE ROADMAP

- New on-board computer
- Improved pointing performance

5

GOMSPACE CUBESAT TRENDS

5th generation

Market needs

- Reduce lead times
- Higher performance payloads
- High pointing performance
- Reliability and availability
- Mission lifetime increase

System technology trends

- Standardization
- Third party equipment and payloads
- 12U and 16U
- +100W power
- High performance AOCS
- Radiation tolerance
- Increased autonomy

OBDH technology trends

Cubesat Space Protocol (CSP)

6th generation

- Standardization of drivers and handlers
- CAN replacing I2C and SPI
- High performance OBC (Zynq)
- AOCS auto-coding
- SEE / SEFI (radiation) mitigation
- On-board procedures
- FDIR
- Fault tolerance / redundancy

WHERE SAVOIR COULD HELP

OBDH technology trends

- CSP
- Standardization of drivers and handlers
- CAN replacing I2C and SPI
- High performance OBC (Zynq)
- AOCS auto-coding
- SEE / SEFI (radiation) mitigation
- On-board procedures
- FDIR
- Fault tolerance / redundancy

- Standard data structures for equipment?
- Lean SRDB standard? (not SCOS MIB!)
- AOCS auto-coding handbook
- SEE / SEFI (radiation) mitigation guidelines / handbook?
- On-board procedures handbook incl. interoperability?
- FDIR handbook
- ...

Maybe a very good analogy: **ESA CubeSat IOD** standard with tailoring of ECSS for CubeSats – very pragmatic and **usable**!

SAVOIR AT GOMSPACE

Survey among GOMSpace systems engineers:

What is your knowledge and use of SAVOIR?

What is it?	66% (6)
I have a general knowledge of it	22% (2)
I use or have used it at least once	11% (1)

Current uses at GOMSpace:

- SAVOIR-HB-005 Automatic Code Generation for AOCS & GNC Flight SW
 - Juventas AOCS
 - CubeMap AOCS

% (1) SAVOIR-HB-003 SAVOIR **FDIR Handbook**

- Juventas FDIR
- GOMX5 and CubeMap FDIR (early phases)

SAVOIR AT GOMSPACE

- Today SAVOIR has (unfortunately) a very limited exposure and use at GOMSpace
- New needs at GOMSpace, and probably other CubeSats
- A good time to engage CubeSat community with SAVOIR
- But, keep it pragmatic (Cubesat IOD)
 - CubeSats are allowed to fail (but somehow mostly they don't)

JUVENTAS: TEST-DRIVEN DEVELOPMENT APPROACH

• How cubesat teams can innovate

JUVENTAS: TEST-DRIVEN DEVELOPMENT APPROACH

- Juventas deep space mission as part of HERA
- High level of autonomy needed
- New ConOps for deep space wrt LEO missions

JUVENTAS: TEST-DRIVEN DEVELOPMENT APPROACH

- Same use cases and op. scenarios are used for power, thermal, AOCS simulations
- environment
- On-board procedures as test cases for SW integration

No separate tools for ops. development and validation

JUVENTAS: DETAILED WORKFLOW

Workflow used for

- Development phase
- Operation phase (update or new procedures)
- First step Human-readable pseudo-code
- Second step Convert in list of commands
- Use Cases
- Operational Scenarios

On Board Control Procedures (OBCPs)

■ OBCPs ≠ Flight Operation Procedure involving ground

JUVENTAS: USE CASE EXAMPLE

- Human readable yaml file
- Desired operation
- Commands if known

ml file	# Objectives: # Confirm that the spacecraft essential functions are working # Housekeeping telemetry is collected # No health alerts are raised					
wn	# Assuming that OBC and P80 are ON as soon as S/C is ON # potential alternative flow: OBC does not kick watchdog, P80 to power cycle OBC					
	# Source ConOps: ConOps.xlsx, 08/02/2022 # Source for OBC: ? # Source for P80: gs-man-nanopower-p80-pmu-2.3.0-1-g85cc374 # Source for BP8: gs-man-nanopower-bp8-2.0.0					
Operation Commands	<pre>commandSeries: - description: compile essentials of EPS and OBC via beacon commands: - description: request essentials_beacon definition: - description: request essentials_beacon - description: request health report definition: - description: request health report definition: - type: gosh commandLine: health report show 1 - description: send essentials_beacon via CFDP definition: - type: gosh commandLine: cfdp put ./files/platform-essential-check.bin</pre>					

JUVENTAS: WORKFLOW EXAMPLE

Use case

Company confidential - Do not distribute without permission

JUVENTAS: TEST-DRIVEN DEVELOPMENT APPROACH

- · Efficient and automated workflow
 - From system engineering use cases to SW functions and flight procedures
- Deployed and in active use
 - Juventas
 - Functional test framework (Sw development and validation)
 - Flatsat tests
 - Spacecraft model tests (EM)
 - ...
 - Commercial mission
 - Flatsat tests
 - Mission operation system tests
 - ...
 - CubeMap deployment is starting
 - GOMX5 deployment is starting

- Next steps
 - Deployment on flight models (Juventas PFM)
 - Merging with GOMSpace new mission operation environment (HOOP MCS, Grafana)
- Want to know more?

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022. Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC-22-B4,8,x73905

JUVENTAS CUBESAT IN SUPPORT OF HERA MISSION TO DIDYMOS ASTEROID SYSTEM: TEST-DRIVEN IMPLEMENTATION

Mehdi Scoubeau^a*, Zoe Townsend^a, Camiel Plevier^a, Piotr Perczinsky^a, Etienne Le Bras^a, Franco Perez Lissi^b

"We help teams across the globe achieve their goals in space"

GomSpace A/S | Langagervej 6 | DK-9220 Aalborg East | Denmark info@gomspace.com | T: +45 71 741 741

gomspace.com

JUVENTAS: CONOPS APPROACH

This approach improved engineering communication and consistency, and is now also adopted by other GOMSpace projects

Operational Scenario	Description and constraints	Scenario's purpose	Use Case or < <event>></event>	Flight Orientation	Spacecraft Mode	Duration [s]
SSTO 3.3km Science Arc	A segment of an oribit (arc) with JuRa and Radio Science measurements	flight procedure; input to power budget - verification; input to Mission Operations Plan - duration and operations	platform-standby	Didymos-pointing	Nominal Mode	0
			JuRa-observation	Didymos-pointing	Nominal Mode	2700
			platform-standby	Didymos-pointing	Nominal Mode	300
			radio-science-measurement	Didymos-pointing	Nominal Mode	1500
			platform-standby	Didymos-pointing	Nominal Mode	0

Timed sequence of GOSH

commands