

# IoT4EO - The ESOC perspective

Vemund Reggestad

16/02/2023

ESA UNCLASSIFIED – Releasable to the Public

→ THE EUROPEAN SPACE AGENCY

\*

+

Directorate of Operations, Ground Systems Engineering & Innovation Department

> Multi-mission Programme

Navigation

Support



Flight Dynamics & Mission Analysis Mission Operations Data Systems Standardisation

Ground Station Engineering

Ground Segment Reference Facility

esa



### **Assumed scenario:**

Continuous connectivity via a combination of Space-to-ground direct links or relays (LEO/MEO/GEO) with very low bandwidth (~ 1 kbps ), with latency in order of a few seconds or less.

### Question

What is the impact on Spacecraft Operations and (Flight Operations) Ground Segment Engineering for typical ESA mission?

These are my views, based on interviews with colleagues.

### The story starts with today





### **S-band Architecture**





- From 1 pass per day to 1 pass per week?
- Speed up the phase out of S-Band station network?
  - Also bulk commanding needed. → Mission Timeline uploads, memory images etc...
  - So probably still need a "powerful" TC upload capability.
  - Certain type of anomaly recoveries, need lots of TM/TC capabilities.
- Still need bulk TM download of cyclic recorded TM for offline analyses and post-operation processing at ground.
- Most concluded: We'll probably still need them!

#### ■ 📲 🍁 → THE EUROPEAN SPACE AGENCY

## Satellite operational systems coming out of the basement **Cesa**



- No more hiding behind firewalls on dedicated networks, fences, dedicated lines, physical layer protection.
- No more security by obscurity or "my antenna is bigger than yours" approach....
- Data arrive via internet, hence directly into cloud providers, so let's process it out there as well
- To be analysed: Compatibility with existing protocols
  - ECSS Packet Utilization Standard (PUS) over IoT
  - CCSDS Mission Operation services (MO) over IoT OK3
  - File Based Operations (CFDP) and Delay Tolerant Network (DTN) over IoT Core

#### → THE EUROPEAN SPACE AGENCY

### Security



- Data link security protocols
  - Typical ground-space link baseline is application of CCSDS Space Datalink Security Protocol **mainly for TC Authentication** only this is based on symmetric encryption and secret key infrastructure → Not for IoT devices?
  - With IoT concepts of bi-directional and distributed / internet-like commanding and reception
    - Both TM and TC Authenticated Encryption needs (though subject to individual mission security assessment)
  - Protocol selection for IoT concepts must account for security as part of trade-off
- Application layer security
  - Protocol closure concepts (including those for security) likely to be impacted (e.g. CFDP / FBO)
  - Recommended to explore re-use of 5G/6G and associated security guarantees
- IoT security specifics
  - IoT security in general a hot topic of active R&D and standardisation with a number of publications
  - Resource-constrained devices require lightweight cryptographic algorithms/functions
- Ground system security architecture
  - Much more distributed ground nodes demand revised security operations concept and automation associated with Chain of Trust,
    Public Key Infrastructure, Key Management, Certificates Management.
    - Security orchestration potentially becomes additional points of failures for the system
  - Loss of typical physical facility protections of standard ground station network
    - Must assume physical access/tampering possible for IoT devices



No impact on Science downlinks! Too much data. IoT networks cannot help



### **Reliability and vendor lock in**



- Usage by ESA would require concepts to avoid vendor lock in:
  - International interoperability communication standards
  - Software Defined Radio (SDR) allowing connection to several network providers with same S/C HW.
- Positive side effect: Opens up for a real competitive marked:
  - Swap providers, like you do with your mobile, depending on price.
  - Load balancing, ie. swap according to resource utilization.
- Allows ESA to act as anchor customer for small new constellation in parallel with more established.
  - No need for a single provider with full coverage to embark.

Others say: Well, we're having a contract with GS provider X today, so we can also in the future stay with one provider.

 $\rightarrow$  Like buying a mobile that only works with one provider!?!



# But how do we operate?



### From "Schedulable" to "when needed"

Assumption: IoT will provide some sort of pay-per-use service similar to mobile phones.





→ THE EUROPEAN SPACE AGENCY

### From "Schedulable" to "when needed"

Assumption: IoT will provide some sort of pay-per-use service similar to mobile phones.

- Shift from doing stuff when contact allows to on-request interaction when needed due to some operational need.
- Need to move away from frequent cyclic/scheduled status reporting
  - This is for offline purposes of forensic investigations only, downloaded as piggyback on science data
- Require on-board autonomy to know when to contact ground.
  - Satellite calling-home ability
  - Already current FDIR systems identify critical events.
- Verification of critical events onboard. Did it take place?
- Informing ground of decisions taken by onboard by AI
  - Example: Image not taken due to cloud, send the request to somebody else.



#### 13

#### → THE EUROPEAN SPACE AGENCY

### More or less autonomy?



- Traditional measure of Autonomy: How many hours can the spacecraft be without ground contact?
- Currently designed to survive without ground contact
  - This capability will still be needed (in case of problems with comms etc...)
- Designed to minimize ground contacts



### More or less autonomy?



- Traditional measure of Autonomy: How many hours can the spacecraft be without ground contact?
- Currently designed to survive without ground contact
  - This capability will still be needed (in case of problems with comms etc...)
- Designed to minimize ground contacts (ie. maximum rigid)

### Now:

- Require flexibility to accept replanning/rescheduling
- Satellite "as web server"  $\rightarrow$  Moving control features onboard  $\rightarrow$ 
  - Moving from uplinking commands to goal oriented commanding  $\rightarrow$  More Autonomy.
  - Lowers the entry barrier for on-board autonomy  $\rightarrow$  Gradual improvements.
- A bit perpendicular the amount of autonomy onboard
  - More intelligence in reporting. Ability to synthesise information.
- LunaCOMM context how to initiate "user initiated" services?
  - Specific beacon signals are discussed to initiate services? Use case for IoT?
  - Messaging services (Luna "SMS"/"SOS" service), emergency messages (Space weather)?



### **Impact on Mission Planning concepts**



- Significant complexity of current MPS concepts are planning/scheduling/execution of GS passes
  - Still required for science download and bulk uplinks.
  - Becomes obsolete for nominal platform operations
- Calls for increased flexibility
  - Continuous and Opportunistic replanning
  - New interaction patterns between on-ground and on-board planning.
- Combination of IoT and new Planning and Scheduling concepts enables new opportunities.
  - Need coordinated investments in both areas

• Enable urgent/emergency/time critical services

## **Simplify life**

- Scheduling of Collision avoidance manoeuvres?
  - Go up / go down selection at short notice.
  - Decrease reaction time. Removes dependency of GS passes
  - $\rightarrow$  Allow automation, simpler coordination.



- No need for GS for orbit determination (ranging, angles, doppler measurements) when IoT can provide the GNSS position&timing solution directly.
- May still need a LEOP network as less passes would require more autonomy onboard.
- Enable multi-satellite launches allowing to waive requirements to see all satellites within Xh after launch.
  - Already for SWARM, extra antenna to allow seeing all missions shortly after launch.



### **New opportunities**



- Satellites with very driving orbits, like Very low LEO (VLEO)
  - Aeolus@320km requires orbit predictions to the ground stations 4x per day today to ensure aquation of signal at GS.
- Accelerate adoption of standard IT solutions for space ("Web server on board")
- Would Optical+IoT be sufficient to not need traditional RF?
- Inter-satellite-links(ISL) & IoT for LEOP scenarios with multiple launches, to reduce number of GS passes needed.



## Summary:

## Operations of Satellite in the Age of IoT will resemble more operation of a network of flying computers, rather than today's spacecraft ops.



### - I have a dream -

ESA to fly innovative experimental communication terminals on our main flagship missions, to inspire and accelerate innovation





ESA/ESOC is searching for a PostDoc Research Fellow to work on impact of IoT on operations and ground segments.

VN will be published soon on https://jobs.esa.int/

We would like to hear about your cool research ideas!