AMD

AMD Xilinx Radiation Tolerant FPGAs

Ken O'Neill Space Systems Architect <u>koneill@amd.com</u> March 2023 Paul Lynch Customer Quality Engineer paul.lynch@amd.com

APPROVED FOR PUBLIC RELEASE

Agenda

- AMD acquisition of Xilinx
- XQR Kintex[™] UltraScale[™] update
- XQR Versal[™] overview and update
 - Architectural features
 - Product portfolio
 - Packaging, qualification and screening
 - Power and thermal considerations
 - Radiation
 - Ecosystem partners
- Questions and answers

AMD Acquisition

AMD Acquired Xilinx February 2022

- The combination of AMD and Xilinx is a leading high performance computing company
- Aerospace & Defense customers can now leverage a combined portfolio of CPUs, GPUs, FPGAs, Adaptive SoCs and Unified SW Platforms
 - World-class 2.5 / 3D die integration and packaging technology
 - Commercially-proven chiplet & C2C interconnect technology
 - Leading-edge AI engines and domain specific architectures
- Xilinx becomes part of the AMD Adaptive Embedded Computing Group (AECG)
- AECG continues the 30+ year legacy of Xilinx in support for the Aerospace & Defense industry with the supply of state-of-the-art microelectronics

AMD AECG Leadership Team

Adaptive Embedded Computing Group

Salil Raje SVP and General Manager, Data Center and Communications Group

Mark Wadlington SVP and General Manager, Core Markets Group

Vincent Tong SVP, Global Operations and Quality, Adaptive and Embedded Computing Group

Rajneesh Gaur CVP and General Manager, **Embedded Solutions**

Victor Peng President, Adaptive and Embedded

Computing Group

Aman Singh Sr Director, Chief of Staff

Ivo Bolsens SVP and Chief Technology Officer

XQR Kintex[™] UltraScale[™] Update

7

XQR Kintex[™] UltraScale[™] Qualification - Completed!

- The XQRKU060 qualification was completed on schedule
- 3 qualification lots tested and meet requirements per MIL-PRF-38535
- Qualification report available
 - Group A (TM5005)
 - Group B (MIL-STD-883)
 - Group C (TM1005 2000 Hours) + Group C (TM1005 <u>Aug. 2021 Surpassed 10K hours</u> for New Product Introduction)
 - HTS (TM 1008); HAST (JESD22-A110); Temp Cycle (TM1010 Cond C)
 - Group D (Sub Groups 1,3,4,5)
 - Group E (TM 1019, Sub Group2)

QML-Y Certification Plans for XQRKU060

- AMD to pursue certification once DLA COVID-19 restrictions are over
- 9-12 month effort once initiated

Additional Reliability Monitors

- Board Level Reliability completed
- 1000 Temp cycles (-55°C to 100°C, 10°C/min, 15min dwell time) PASSED

XQRKU060 Xilinx Class B, Class Y **PASSED** Qualification, Shipments since Sept 2020

XQR Versal[™] ACAP for Space 2.0 Applications

AMD AECG – A Leading Provider for Aerospace and Defense **30+ Years Heritage** Space & MilSatCom

Commercial & Military Avionics

- DO-254 and DO-178
- **Certifiable Solutions**
- **SEU** Mitigation
- Advanced Tool Flows

- Space-grade Portfolio
- **SEU** Mitigation
- Payload Processing
- Y, V, and B flow, QML
- TMRTool

Missiles & Munitions Defense-grade Portfolio

- Anti-Tamper IP
- Bare Die

Intelligence, Surveillance & Reconnaissance (ISR)

- Signal Processing
- Vivado™, Vitis™
- Connectivity
- Anti-Tamper IP

AMD Covers Ground-Air-Space **Applications**

Electronic Warfare (EW)

- Signal Processing
- Vivado / Vitis
- Connectivity
- Anti-Tamper IP

MILCOM & Public Safety

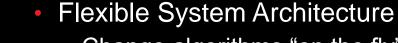
- Signal Processing
- Low Power Solutions
- Waveform IP & Analysis
- LTE UE with P2P
- Secure Information Assurance
- Anti-Tamper IP

Homeland Security

- Vivado / Vitis
- SEU Mitigation
- Partial Reconfiguration

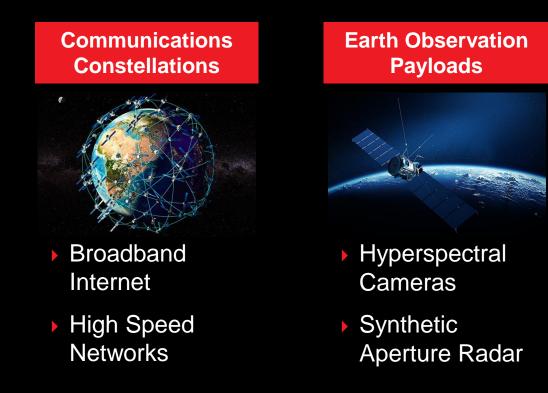
Space Industry Market Challenges & Requirements

- Downlink Bandwidth is limited
- Fast time to market
 - Platform Concept for reuse on multiple missions


- Low Latency and High Bandwidth
 - Seamless and reliable connectivity for broadband communications

Machine Learning in orbit

- Need for capability to process on board a satellite vs ground station
 - Reduce Development Time to launch
 - Process hundreds of Gbps data streams in real time



- Change algorithms "on the fly"
- Reliable components for long mission life, extreme environments

 SWaP (Size, Weight and Power) Tradeoffs

Target Markets and Applications

Navigation/ Technology

GPS

- Entry/Descent/ Landing
- Instruments
- Avionics

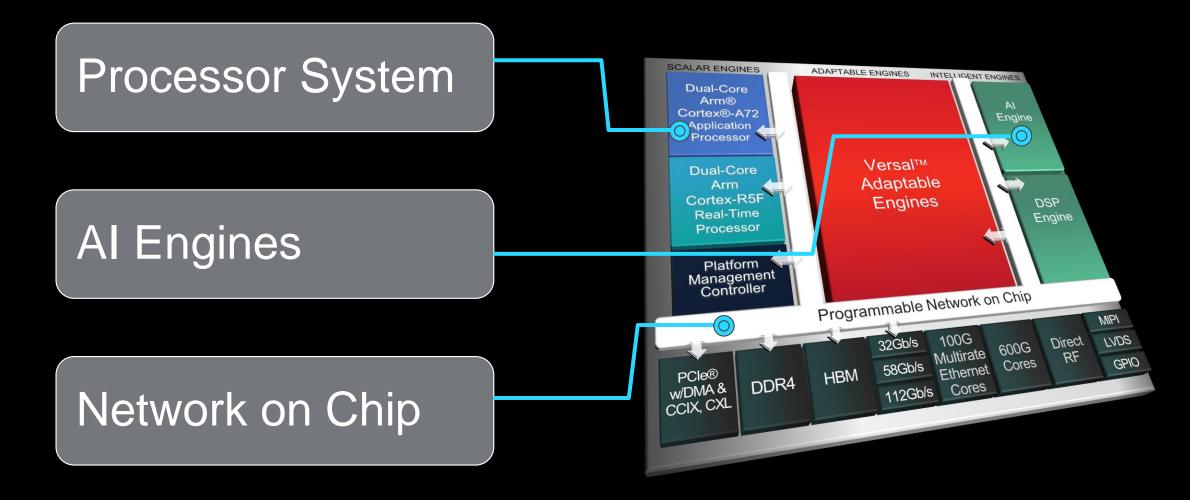
Signal Processing, HW/SW Reconfigurable, Robust Package, Space Grade Tested, On Orbit Flexibility

XQR Versal[™] ACAP for Space 2.0 Applications

First 7nm Adaptable SoC for Space Applications

- AI Core and AI Edge family members with Scalar, Intelligent and Adaptable Engines (ARM[®] CPUs, AI Engines & Prog. Logic)
- Innovative silicon design for SEU mitigation (> 50 patents)
- True on-orbit reconfiguration with unlimited programming cycles

Ruggedized Organic BGA


- AI Core 45mm x 45mm, AI Edge TBD
- Lidless with stiffener ring for added thermal mitigation capabilities
- Footprint compatible with commercial packages

Production Space Test Flow

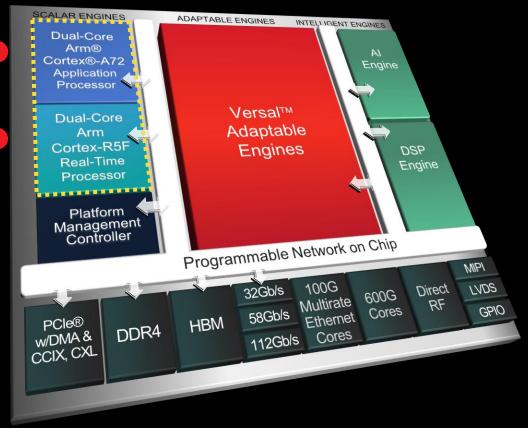
- Screened to MIL-PRF-38535 Class B, modified for organic packages
- Designed for Space 2.0 Applications
- 5 to 7 Year Mission Duration

Novel Features for Space in Versal[™] ACAPs

13

ARM® Cortex® Processors

APU

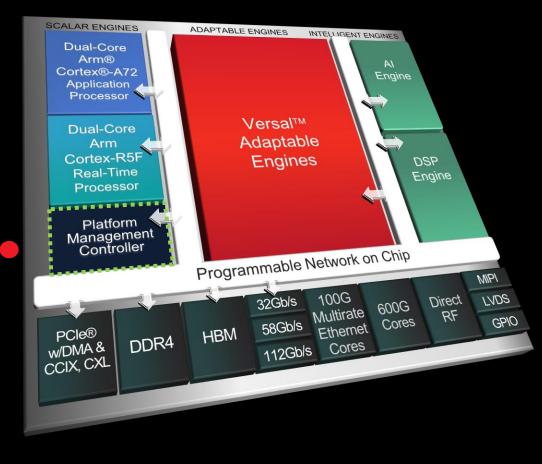

Dual-core Arm Cortex-A72 application processor

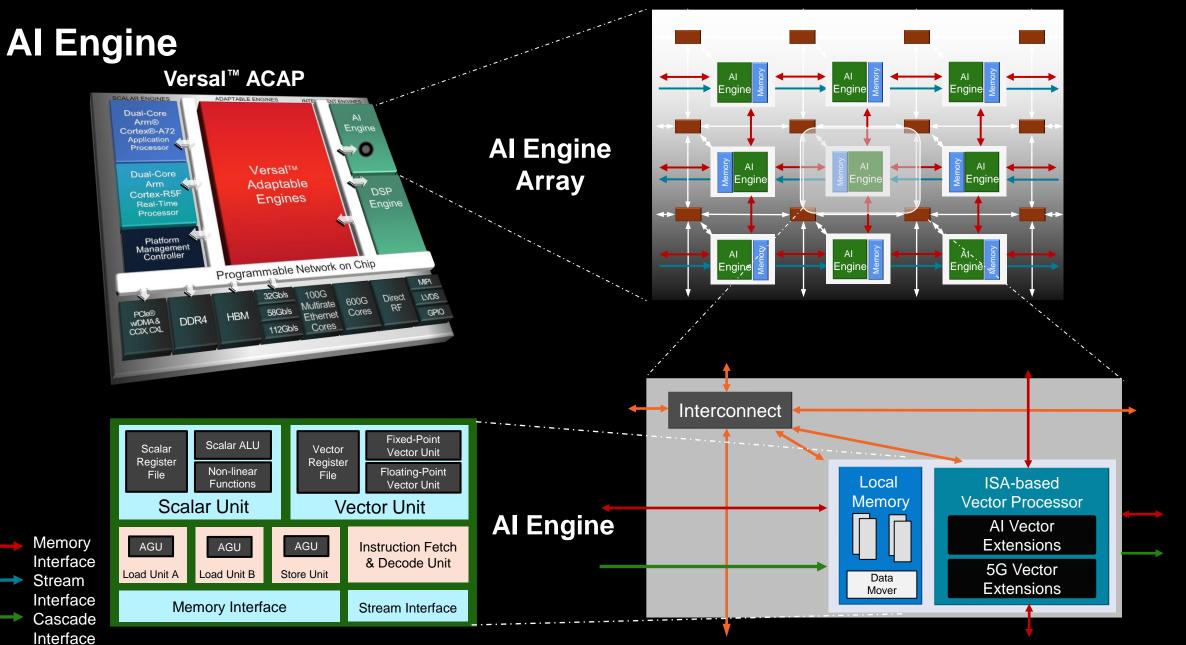
RPU

Dual-core Arm Cortex-R5F real-time processor

Processing system (PS) is part of a group of architectural elements that include:

- Platform management controller (PMC) New central device manager
- Processing system manager (PSM) PS-specific device manager
- Boot peripherals located in the PMC and shared with the PS
- Shared multiplexed I/O (MIO) pins between the PMC and PS
- CCIX and PCIe[®] module (also known as the CPM)
- Network on chip (NoC)
- Tightly coupled, integrated memory controllers capable of operating independently



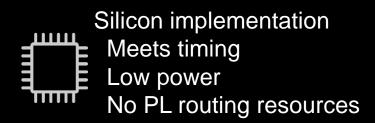

PS supports the low-power and full-power domains (LPD and FPD)

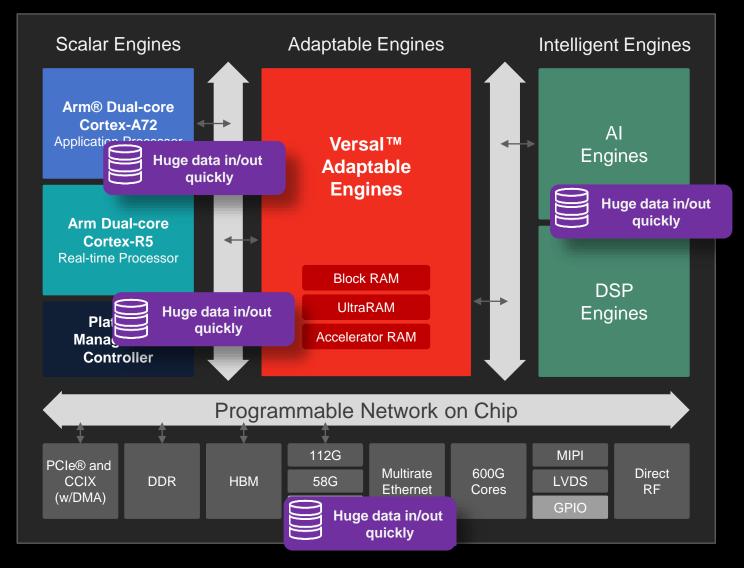
PMC – Platform Management Controller

PMC

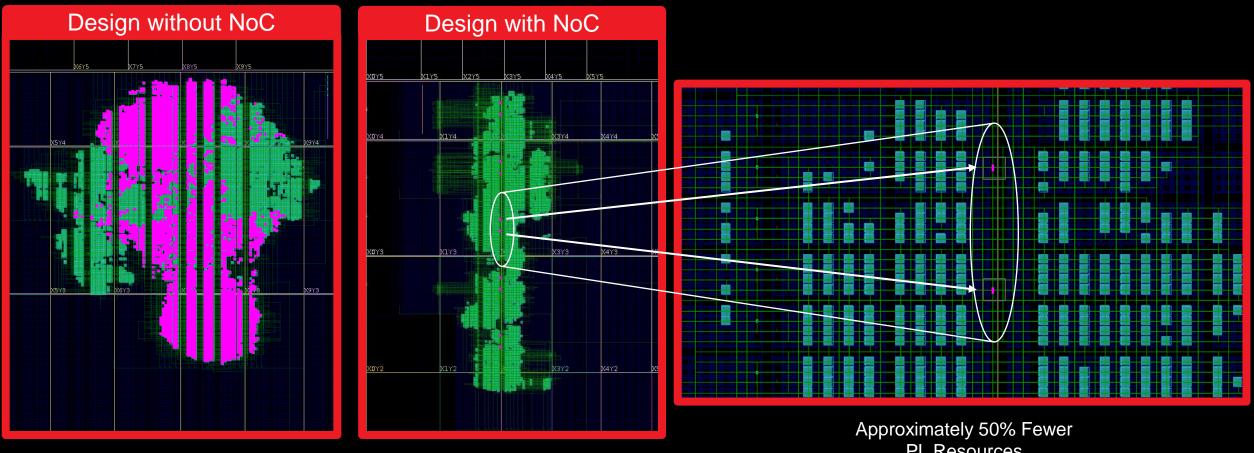
- ► Two hardwired triple-redundant MicroBlaze[™] processors
- Central to all Versal[™] devices
- Power domain is independent from other processors and logic fabric
- Contains the boot peripherals for initialization that become available to the PS after boot
- Handles power management and reset for all blocks, error management, security, configuration, and analog measurements
- Hosts XilSEM Xilinx Soft Error Manager
 - Runs as C code on PMC
 - PMC is a critical part of SEU mitigation infrastructure

AI Engine Summary


- The AI Engine consists of
 - 512-bit SIMD (single instruction, multiple data) vector units, both fixed-point and floating-point
 - 16 KB program memory
 - 32-bit scalar RISC processor
 - 256-bit load (x2) and store units with individual address generation units (AGUs)
- The AI Engine supports multiple levels of parallelism
 - Instruction-level parallelism (ILP)
 - Data-level parallelism (DLP)


Benefits of a Network on Chip

It's fast! High bandwidth for huge data movement

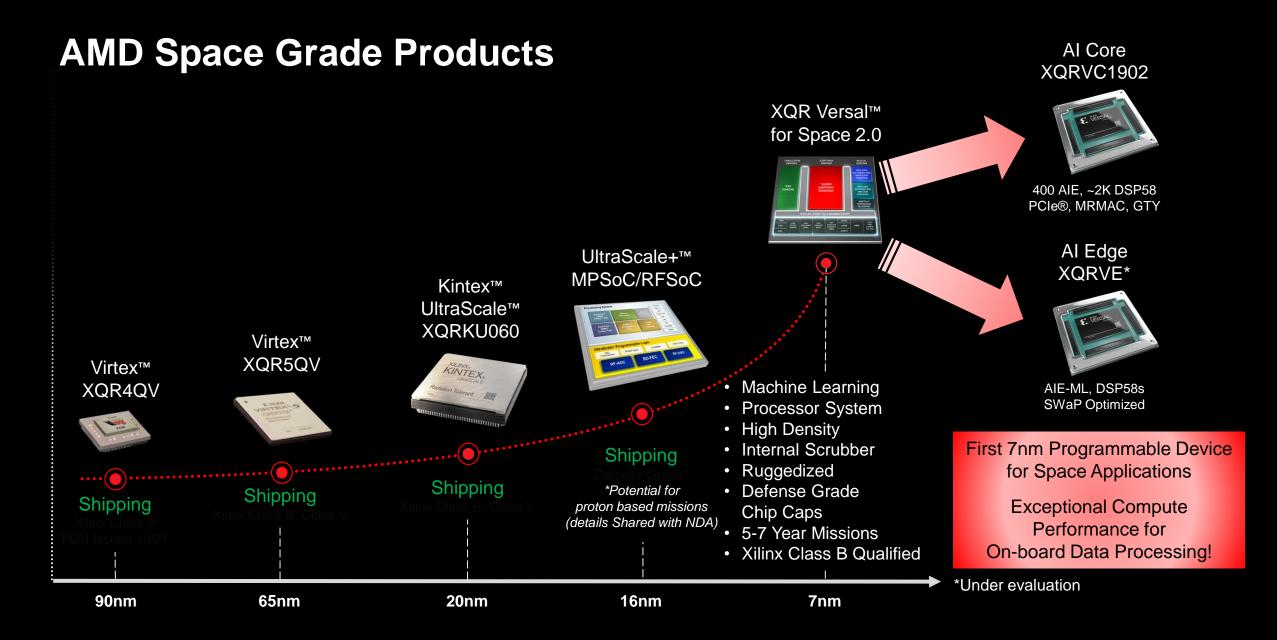


NoC <-> DDRMC DDR interleaving Bottleneck management

Versal[™] ACAP NoC Features and Performance Example

Total Resources*: 70K LUTs + 70K FFs Interconnect*: 37K LUTs + 42K FFs

Total Resources*: 36K LUTs + 28K FFs Interconnect*: 0 Resources, NoC Only

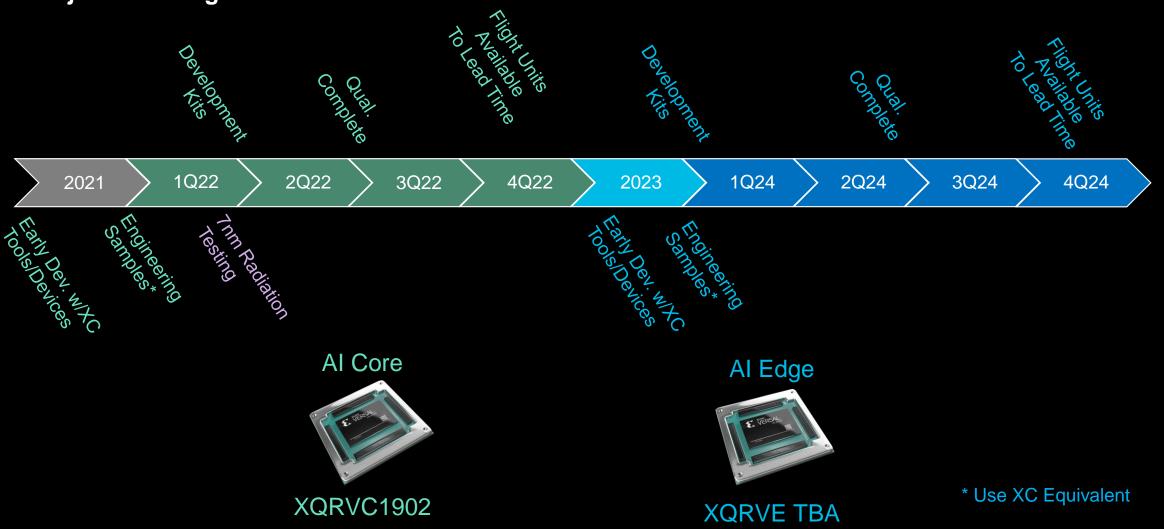

PL Resources

*AMD internal data

NoC Summary

- Network on chip moves data within the device and is also tightly coupled with the DDR memory
- Key NoC components
 - NoC master unit: Brings data into the NoC subsystem
 - NoC slave unit: Takes data out of the NoC subsystem
 - NoC packet switch: Buffers and arbitrates flits
 - NoC routing resources: Vertical and horizontal routes carrying the flits
- Increased system integration
 - Provides high-bandwidth connections among all major blocks within the Versal[™] ACAP device
 - Includes tight coupling with the DDR memory controllers

XQR Versal[™] Product Portfolio


XQR Versal[™] ACAP for Space 2.0 Product Table

		XQRVC1902-1MSBVSRA2197 (AI Core)
	Al Engine Tiles	400 (AIE)
Intelligent Engines	Al Engine Data Memory (Mb)	100
	AI-ML Shared Memory (Mb)	-
	DSP Engines	1,968
	System Logic Cells (K)	1,968
Adaptable Engines	LUTs	899,840
	NoC Master/NoC Slave Ports	28
	Distributed RAM (Mb)	27
	Total Block RAM (Mb)	34
	UltraRAM (Mb)	130
Momory	Accelerator RAM (Mb)	-
Memory	Total PL Memory (Mb)	191
	DDR Memory Controllers	4
	DDR Bus Width	256
	Application Processing Unit	Dual-core Arm [®] Cortex [®] -A72, 48KB/32KB L1 Cache w/ECC 1 MB L2 Cache w/ECC
Scalar Engines	Real-time Processing Unit	Dual-core Arm Cortex-R5F, 32KB/32KB L1 Cache, and 256KB TCM w/ECC
Scalar Engines	Memory	256KB On-Chip Memory w/ECC
	Connectivity	Ethernet (x2); UART (x2); CAN-FD (x2) USB 2.0 (x1); SPI (x2); I2C (x2)
Serial Transceivers	GTx Transceivers	44 GTY (26.5625 Gb/s)
	CCIX & PCIe [®] w/DMA (CPM)	1 x Gen4x8, CCIX
Integrated Protocol IP	PCI Express	4 x Gen4x8
	Multirate Ethernet MAC	4
	Platform Management Controller	Boot, Security, Safety, Monitoring, High-Speed Debug, SEU Mitigation (XilSEM)
Package	Ruggedized Organic BGA	VSRA2197, 45mm x 45mm, 0.92mm pitch
I/O		648 XPIO, 44 HDIO, 78 MIO, 44 GTY
Radiation Single Event Effects (SEE)	Proton and Heavy-Ion Testing Ongoing in 2023	NO SEL, 100% Correctable SEUs, Ultra-low SEFI

XQRVC1902 B qual completed 6/2022

XQR Versal[™] ACAP for Space 2.0 Timeline

Subject to Change

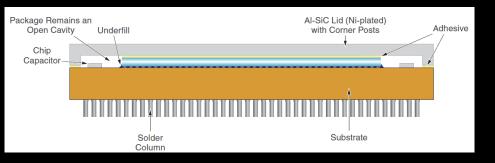
XQR Versal[™] ACAP Packaging, Qualification and Screening

Paul Lynch Customer Quality Engineer

AMD Aerospace and Defense

- AMD/Xilinx has a long history of producing space and organic devices
- We are leveraging this learning to now release class B organic devices

- This has leveraged our silicon experience with space devices XQR5V, XQRKU060, and space 2.0
- Packaging with organics has demonstrated robustness including flight heritage for LEO
- AMD is now expanding our portfolio formally to offer broader organic options specifically designed for space
 - Class B device based upon commercial device with enhanced screening and applicable MIL-PRF-38535 qualification
 - Class Y device being considered, and would have enhanced materials for extended/more rigorous missions


AMD Space Grade Flows

	QML	AMD	QML	AMD	QML	AMD Ceramic	AMD Organic
Flow	"Class V"	"Class V"	"Class Y"	"Class Y"	"Class B"	"Class B"	"Class B"
Wafer Sort	v	V	V	V	V	٧	V
Bumping	N/A	V	N/A	\checkmark	N/A	V	V
Assembly (per MIL-STD-883)	V	V	V	V	v	V	Commercial
Bond Pull (Extended Pull Test)	V	N/A for flip chip	V	N/A for flip chip	N/A	N/A	N/A
Die Shear (1unit/lot)	V	\checkmark	V	V	V	V	V
Die Visual Inspection	Cond A	Cond A	Cond A	Cond A	Cond B	Cond B	Commercial
Serialization	V	\checkmark	V	V	V	٧	٧
Temperature Cycling (cycles)	10	100	10	100	10	100	10
Constant Acceleration	V	N/A for flip chip	٧	N/A for flip chip	V	N/A for flip chip	N/A for flip chip
PIND	V	N/A for flip chip	v	N/A for flip chip	N/A	N/A	N/A
Seal (Fine/Gross Leak Test)	V	N/A	N/A	N/A	V	N/A	N/A
X-Ray and/or SAM	V	V	V	V	N/A	N/A	N/A
Pre Burn-in Electrical Test	@25C	@25C, 125C, -55C	@25C	@25C, 125C, -55C	@25C	@25C, 125C, -55C	@25C, 125C, -55C
Dynamic Burn-in @125C	240 hrs	240 hrs	240 hrs	240 hrs	160 hrs	160 hrs	160 hrs
Post Burn-in Test @25C with Read & Record	V	V	V	V	N/A	N/A	N/A
Static Burn-in (144 hours @125C)	V	\checkmark	V	\checkmark	N/A	N/A	N/A
Group A Post Burn-in Test @25C with Read & Record	V	V	V	V	٧	V	٧
Group A Final Test @-55C with Read & Record	V	\checkmark	V	\checkmark	v	V	V
Group A Final Test @125C with Read & Record	V	V	V	٧	٧	٧	٧
Column Attach	V	\checkmark	v	\checkmark	v	V	N/A (BGA Pkg)
100% QA Electrical @25C	٧	V	V	V	٧	٧	N/A
Visual Inspection	V	\checkmark	V	\checkmark	V	V	V
Group B Lot Specific	V	\checkmark	V	٧	V	٧	٧
Group C Sample to 44k device hours	v	\checkmark	v	V	v	V	V
Group D	V	V	V	V	V	٧	V
Group E Total Ionizing Dose	V	V	V	V	N/A	N/A	N/A
DPA Sample/Ion Milling	N/A	\checkmark	N/A	\checkmark	N/A	N/A	N/A

- AMD Flows derived from MIL-PRF-38535 for high lead count, flip chip devices
- AMD exceeds the QML requirements in:
 - Temp cycles
 - Pre Burn-in electrical testing
 - DPA with column attach stress

AMD XQR Construction Comparison (Ceramic Devices)

Feature	Attribute	XQR5VFX130-CN1752	XQRKU060-CNA1509			
Qualification Level	Class	B and Y	B and Y			
	Package Type	Ceramic Colu	mn Grid Array			
	Body Size	45x45 mm sq.	40x40 mm sq.			
Package	Height	8.29 mm	8.53 mm			
Fackage	Pitch	1.0	mm			
	Array	42x42	39x39			
	Corner Depopulation	;	3			
	Supplier					
C4 Bump	C4 Material	Eutectic,	63Sn37Pb			
	Pitch	217 um	180 um			
	Material	Ceramic (Alumina)				
	Thickness	4.11 mm	4.35 mm			
	Substrate Metal Layers	28 layers	37 layers			
Substrate	I/O, Vcc, Vss Trace Metallization	Tungsten (W)				
	Via Metallization	Molybdenum (Mo)				
	C4 Pads	E-Less Ni/Au				
	Substrate LGA Pads	E-Less Ni/Au				
	Supplier	Куо	cera			
	Chip Capacitors	Mil screened				
Assembly	Heatspreader Design	4 cc	prner			
Assembly	Heatspreader Material	Ni plate	d AlSiC			
	Underfill	Underfill A	Underfill B			
	Thermal Interface Material (TIM)	TIMA				
	Supplier	6 Sigma				
Column/BGA Ball	Material	80Pb/20Sn				
COlumn/DGA Dall	Height	2.20 mm				
	Diameter	0.51 mm				

- Almost identical BOM used for both older ceramic packages
 - The material set was fixed with the release of the XQR5VFX130 device in 2011
- This BOM has proven itself to be very reliable, but the ceramic substrate has limitations with regard to routing density and performance

AMD XQR Construction Comparison (Ceramic vs. Organic)

Feature	Attribute	XQRKU060-CNA1509	XQRVC1902-VSRA2197	
Qualification Level	Class	B and Y	В	
	Package Type	Ceramic Column Grid Array	Organic Ball Grid Array	
	Body Size	40x40 mm sq.	45x45mm	
Package	Height	8.53 mm	3.8mm	
l'achage	Pitch	1.0 mm	0.92mm	
	Array	39x39	47x47	
	Corner Depopulation	:	3	
	Supplier	SI		
C4 Bump	C4 Material	Eutectic, 63Sn37Pb	Copper pillar with SnAg solder	
	Pitch	180 um	130um	
	Material	Ceramic (Alumina)	Organic	
	Thickness	4.35 mm	1.45mm	
	Substrate Metal Layers	37 layers	16 layers	
Substrate	I/O, Vcc, Vss Trace Metallization	Tungsten (W)	Copper	
	Via Metallization	Molybdenum (Mo)	Copper	
	C4 Pads	E-Less Ni/Au	Sn/Cu SOP	
	Substrate LGA Pads	E-Less Ni/Au	SAC305 SOP	
	Supplier	Kyocera	SPIL	
	Chip Capacitors	Mil screened	Commercial	
Assembly	Heatspreader Design	4 corner	Stiffener	
Assembly	Heatspreader Material	Ni plated AlSiC	Stainless Steel	
	Underfill	Underfill B		
	Thermal Interface Material (TIM)	TIMA		
Column/BGA Ball	Supplier	6 Sigma	SPIL	
	Material	80Pb/20Sn	63Sn/37Pb	
COlumn/DGA Dall	Height	2.20 mm	0.5mm	
	Diameter	0.51 mm	0.64mm	

- Organic substrate has higher density routing to allow more complex devices
 - Allows high speed performance
- Organic substrate is lighter and thinner than ceramic substrates
- Organic substrate is aligned with future device enhancements and stacked silicon packaging
- BGA format allows for lower overall package height than column grid array
- Still Sn/Pb compatible with existing board assembly and addresses whisker concerns

AMD A&D Qualification

• Industry and military requirements differ by intended product

Stress Test	MIL-STD-883 JEDEC reference	Conditions	Conditions XC Commercial		XQR Class Y
Prod. Burn-in	TM 1015	Tj = 125°C Vccmax		Dynamic: 160 hrs.	Dynamic: 240 hrs., Static: 144 hrs.
Group A	TM 5005	Functional, AC and DC Parameters	Test at 110°C	Test at -55°C, 25°C and 125°C	Test at -55°C, 25°C and 125°C
Group B	Mil Std 883	Organic: Commercial Assembly Monitors Ceramic: Mil Std Assembly Monitors	Commercial monitors	Commercial or Mil Std 883	Mil Std 883
Group C	TM 1005 JESD22-A108	Tj = 125°C, Vccmax	1000 hrs, 3 lots, 135 units total	1000 hrs, 3 lots, 135 units total	1000 hrs, 2 lots, 90 units total 4000 hrs, 1 lot, 45 units total
HTS	TM 1008 JESD22-A103	Ta = 150°C	1000 hrs, 3 lots, 75 units total	1000 hrs, 3 lots, 75 units total	1000 hrs, 3 lots, 75 units total
THB or HAST	JESD22-A101 JESD22-A110	Organic: THB 85°C / 85%RH, Vccmax Ceramic: HAST 130°C / 85%RH, Vccmax	THB - 1000 hrs, 3 lots, 75 units total	THB - 1000 hrs or HAST - 500 hrs 3 lots, 75 units total	HAST - 500 hrs 3 lots, 75 units total
Temp Cycle	TM 1010 JESD22-A104	Organic: Cond. B: -55°C / 125°C Ceramic: Cond. C: -65°C / 150°C	1000 cyc, Condition B 3 lots, 75 units total	1000 cyc, Cond. B or C 3 lots, 75 units total	1000 cyc, Cond. C 3 lots, 75 units total
Group D	TM 5005	Sub-Groups 1,3,4,5		15 units / subgroup	15 units / subgroup
Group E	TID: TM1019	> 100krads, Cond. A			5 units

AMD Reliability Qualification for Commercial Grade Versal[™]

- Versal Organic Class B qualification was built upon the previously completed commercial qualification
- AMD Versal Commercial Qualification Results
- Due to similarity in package and device design and fabrication, commercial reliability data does give some indication on XQR reliability

Test	Stress Conditions	Test Vehicles	Lot Quantity	Sample Size	Number of Failures	Cumulative Device Hours/ Cycles
High Temperature Operating Life	T _J = 125°C, > V _{CCMAX} V _{CC_CORE} = 0.938V	XCVC1902-VSVA2197 XCVP1202-VSVA2785	8 2	291 96	0 0	291000 96,000
High Temperature Storage ⁽¹⁾	T _A = 150°C	XCVC1902-VSVA2197	6	150	0	150,000
Temperature Cycling ⁽¹⁾	Cond. B (-55°C / 125°C)	XCVM1802-VFVC1760 XCVC1902-VSVA2197 XCVC1902-VSVD1760 XCVC1702-VSVA1596 XCVM1402-NBVB1024 XCVM1402-NSVF1396 XCVP1202-VSVA2785	3 8 3 6 6 4 6	75 150 75 96 82 58 136	0 0 0 0 0 0 0	300000 150,000 75,000 96,000 82,000 58,000 136,000
Temperature Humidity Biased Test ⁽¹⁾	85°C, 85% RH biased	XCVC1902-VSVA2197	6	150	0	150,000

(1) Units submitted to MSL-4 preconditioning prior to stressing

XQR Versal[™] ACAP for Space 2.0 Qualification & Screening

- Xilinx Class B qualification completed
 - Derived from MIL-PRF-38535
 - Groups A D
 - Burn-in
 - High-temp storage and operating life
 - Temp cycling
- All devices will be screened to Xilinx Class B for organic packages
 - Derived from MIL-PRF-38535
 - Offered for mission duration up to 7 years
- For complete qualification details & results, please contact Xilinx Customer Quality team

AMD Reliability Qualification for Versal[™] XQR (Class B)

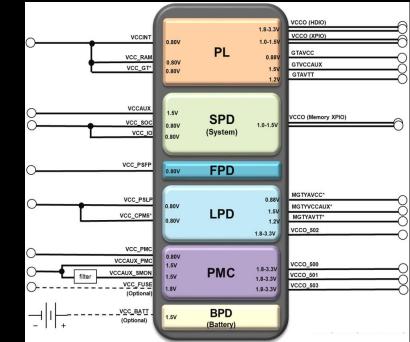
• AMD has successfully completed our Class B qualification for the Versal XQRVC1902 device

Stress Test	MIL-STD-883 JEDEC reference	Conditions	Duration / Sample Size	Results
Prod. Burn-in	TM 1015	Dynamic, Tj = 125°C Vccmax	160 hrs.	Passed
Group A	TM 5005	Functional, AC and DC Parameters Test at -55°C, 25°C and 125°C	Test at -55°C, 25°C and 125°C	Passed
Group B	Various JEDEC	Assembly Monitors	\checkmark	Passed
Group C	TM 1005	Tj = 125°C, Vccmax	1000 hours 3 lot, 135 units total	Passed
HTS ¹	TM 1008	Ta = 150°C	1000 hours 3 lots, 75 units total	Passed
THB ¹	JESD22-A101	85°C / 85% RH, Vccmax	1000 hours 3 lots, 75 units total	Passed
Temp Cycle ¹	TM 1010	B: -55°C / 125°C	1000 cycles 3 lots, 75 units total	Passed
Group D ¹	TM 5005	Sub-Groups 1,3,4,5	3 lots, 15 units / subgroup	Passed

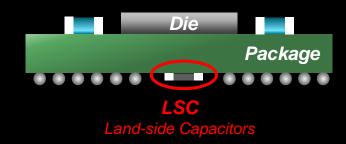
(1) Units submitted to MSL-4 preconditioning prior to stressing

Note: 4000 hour Group C Qualification Versal[™] family data required for meeting QML class Y flight requirements (under class S) pending completion

AMD Aerospace and Defense


- The release of AMD Versal[™] ACAP for Space 2.0, organic based XQRVC1902 device is the next step for AMD to support space customers
- Silicon and organic packaging has demonstrated the necessary reliability to enable the use of highperformance devices in a lighter and smaller package
- AMD Class B qualified and screened units give customers added risk mitigation over other organic devices

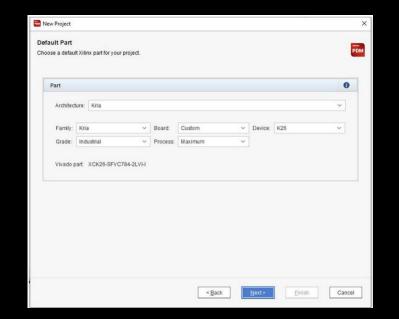
Power and Thermal Considerations

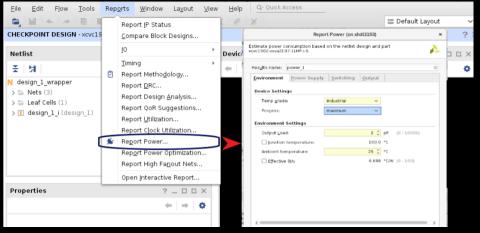

Ken O'Neill Space Systems Architect

XQR Versal[™] ACAP Power

- Power Distribution Network (PDN)
 - Land-side capacitors (LSC): short distance to die; low package induction
 - Optimal mix of SMT, LSC and on-die caps helps ensure noise mitigation across wide frequency range
- Xilinx Power Design Manager (PDM) available now
 - Stand-alone power estimator based on Java[™]
 - Enhanced stability, user interface, IP wizards, XDC constraints
- Power Delivery
 - Strategic partnerships for optimized, reliable, radiation tolerant power delivery
 - Monitoring, protections and flexible features to reduce BOM count and improve performance
- Power and Thermal Dissipation go hand-in-hand
 - Greater power density on Versal demands proper thermal mitigation
 - Must do complete thermal simulation
 - Siemens <u>Simcenter Flowtherm</u>
 - Ansys[®] <u>lcePak</u>
 - XQR Versal thermal models will be available on Space Lounge

www.xilinx.com/power


Power Design Manager Supports Two Major Design Flows


Manual Estimation Flow

- Completely manual entries for power estimation
- Start with device selection, followed by thermal specifications and configuring the PMC (platform management controller)

Import Flow

- You can import the XPE file generated from Vivado[™] power into PDM while creating a new project
- You can also use existing estimations from XPE and import into PDM for Versal[™] and Kria[™] devices

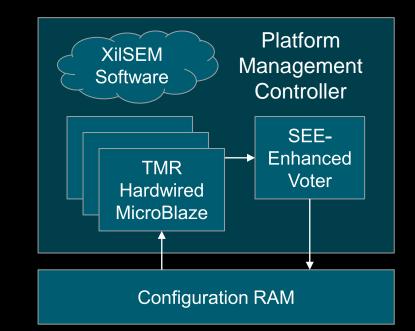
Addressing Thermal Design Challenges

- AMD highly recommends the use of thermal simulation via CFD software
- AMD has improved the thermal simulation models
 - Predict the thermal performance of the device
 - Quickly iterate through different heat sinks, board placement, airflow directions and countless other scenarios
 - Swiftly and confidently arrive at optimal thermal solution
- Thermal design decisions must take place prior to board layout

- Choosing a material with high thermal conductive properties to help ensure:
 - Complete coverage (>95%)
 - High reliability
- AMD is improving thermal performance by:
 - Refining and improving current processes
 - Introducing and embracing new packaging designs
- Low power screened XQRVC1902
 - 20% static power reduction in I_{CC}
 - Ready for quote now using SCD append "5355" to ordering code

XQR Versal[™] ACAP Radiation Effects

Versal[™] ACAP Radiation Effects Summary


	Protons (2 – 105 MeV) Low Earth Orbit, 500 km, 20° inclination			Heavy-ions (1 - 80 MeV·cm²/mg) Geosynchronous Earth Orbit			TID
	CRAM SEU (upset/bit/day)	SEL	SEFI (events/device/ <mark>year</mark>)	CRAM SEU		SEFI (events/device/ <mark>year</mark>)	(gamma)
Observed Rates	3.5x10 ⁻⁹	ZERO events observed	PS: 1.3 XilSEM: ZERO AIE, GT Planned CY2023	6.5x10 ⁻¹²	ZERO events observed	PS: 0.16 and XilSEM: 4.9x10 ⁻³ AIE, GT Planned CY2023	PASS 120 KRad(Si)
Comments		on energy: 64-400MeV nent: 1x10 ¹² p/cm ² at 125°C			nergy: 1-80 MeV·cr nt: 1x10 ⁷ per ion/c		<18 Krad/min

Estimates based on CREME96 AP8-Max; 500km and GEO models

- DUTs: Versal 7nm VC1902, 20 parts from 5 wafer lots to account for lot-to-lot variation
- ZERO SEL events in maximum V_{CC} and junction temperature conditions at LET up to 80 MeV·cm²/mg
- ZERO uncorrectable Configuration RAM (CRAM) events in LEO and GEO
 - Configuration RAM protected by EDAC and interleaving
- Robust XilSEM internal scrubber SEFI rate may eliminate need for on-board scrubber in space flight
 - Reference Xilinx user guides UG643 and PG352 for XilSEM scrubbing operation and cycle time
- Xilinx has published Versal SEE results at SEE/MAPLD 2022, NSREC 2022, and RADECS 2022
 - Versal 7nm SEL and SEU (terrestrial neutron) paper published & presented at NSREC 2021

XilSEM – CRAM Soft Error Mitigation in XQR Versal[™] ACAP

- XQR Versal uses a novel approach to mitigate SEUs in configuration RAM (CRAM)
 - Previous generations of Xilinx FPGAs use SEM (Soft Error Manager) IP residing in the programmable logic fabric
 - XiISEM uses the hardwired TMR MicroBlaze[™] processors in the Platform Management Controller (PMC) as a fault-tolerant platform to mitigate upsets in the configuration RAM
 - Approx 30 times greater protection than previous techniques

	Kintex [™] UltraScale [™] XQRKU060	Versal XQRVC1902	Comments
Configuration Memory (Mb)	193 Mb	363 Mb	VC1902 has ~ 80% more CRAM than KU060
SEFI Rate per Device* (with mitigation, GEO solar min)	1 in 6 years Using SEM	1 in 200 years Using XilSEM	30X Improvement

* AMD internal radiation test data

AMD Ecosystem Partners

Ecosystem Partners

- Configuration Memory
 - 3D-Plus
 - Avalanche
 - DDC
 - Infineon
 - Mercury Systems

- Power Distribution
 - Frontgrade (CAES)
 - Infineon
 - Renesas
 - Texas Instruments

Timelines, roadmaps, and/or product release dates shown in these slides are plans only and subject to change.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD's products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

©2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Xilinx, the Xilinx logo, Kintex, Versal, Virtex and UltraScale and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. ARM and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. Java is a registered trademark of Oracle and/or its affiliates. PCIe® is a registered trademark of PCI-SIG Corporation.