NG-Ultra, the European rad-hard SoC + FPGA suitable for future space applications

SEFUW 2023

Marion LE PENVEN & Jean-Luc POUPAT

Key Messages Summary

NG-Ultra is unique in the landscape of available Rad Hard components

It is the only European FPGA solution with a SoC

It offers performancess & robustnesss breakthroughs with Huge FPGA + High performance processing

> Tools are (now) at good maturity level and continue to improve

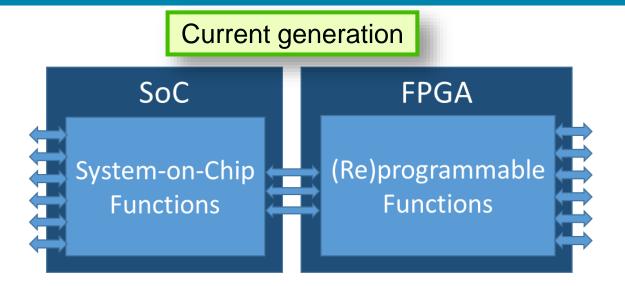
NG-Ultra selected as technical baseline on several Airbus D&S on-going projects

Why NG-Ultra is unique in the landscape of available Rad Hard components?

Introduction Performances Status Ecosystem Status Use Cases Conclusion

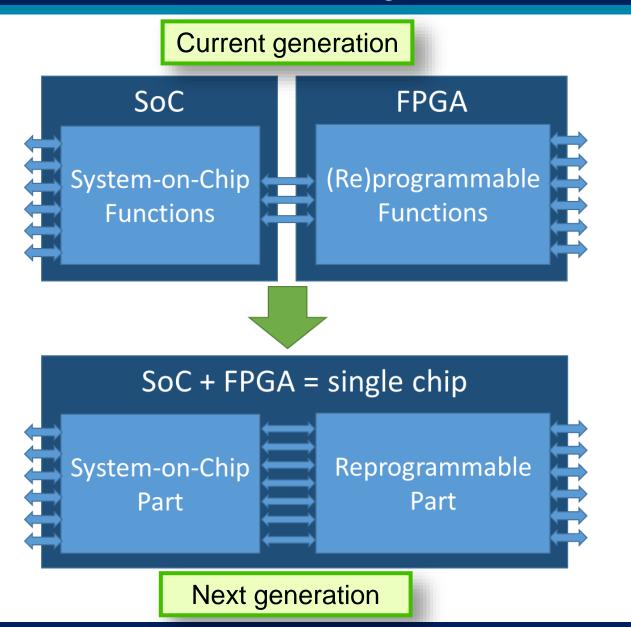
Context

Initiated by CNES, collaboration between Airbus and TAS to develop a European chip supported by H2020 NanoXplore is the company owning and commercialising the NG-Ultra manufactured by STMicro in 28FDSOI


NG-Ultra = SoC + FPGA

Horizon 2020 was the EU's research and innovation funding programme from 2014-2020

To integrated SoCs and beyond

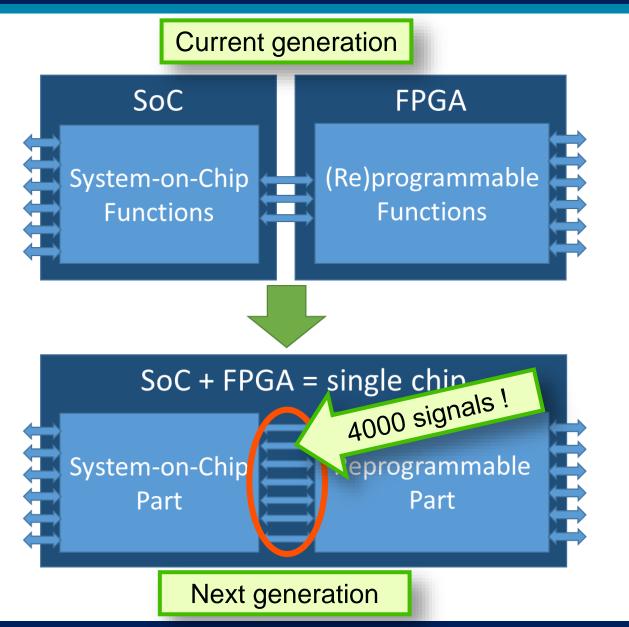


Integrated SoC+FPGA

‡ Consistent with the design of processing boards

- ‡ Optimized interfaces SOC Å ÆFPGA
- ‡ Key enabler for more integrated designs& cost reduction

To integrated SoCs and beyond



Integrated SoC+FPGA

‡ Consistent with the design of processing boards

- ‡ Optimized interfaces SOC Å ÆFPGA
- ‡ Key enabler for more integrated designs& cost reduction

To integrated SoCs and beyond

Integrated SoC+FPGA

‡ Consistent with the design of processing boards

- ‡ Optimized interfaces SOC Å ÆFPGA
- ‡ Key enabler for more integrated designs& cost reduction

Features ±Processing

ARM-based quadcore CPU							
Debug& Trace							
CortexR52	CortexR52	CortexR52	CortexR52				

ÆQuad-Core ARM R52 @ 600 MHz > 4000 DMIPS ÆFPU (SP/DP) + NEON SIMD ÆCompatibility with ARM Debug & Trace ecosystem

FPU : Floating Point Unit / SP/DP : Single/Double Precision / SIMD : Single Instruction Multiple Data Co-processing

Features ±Memories

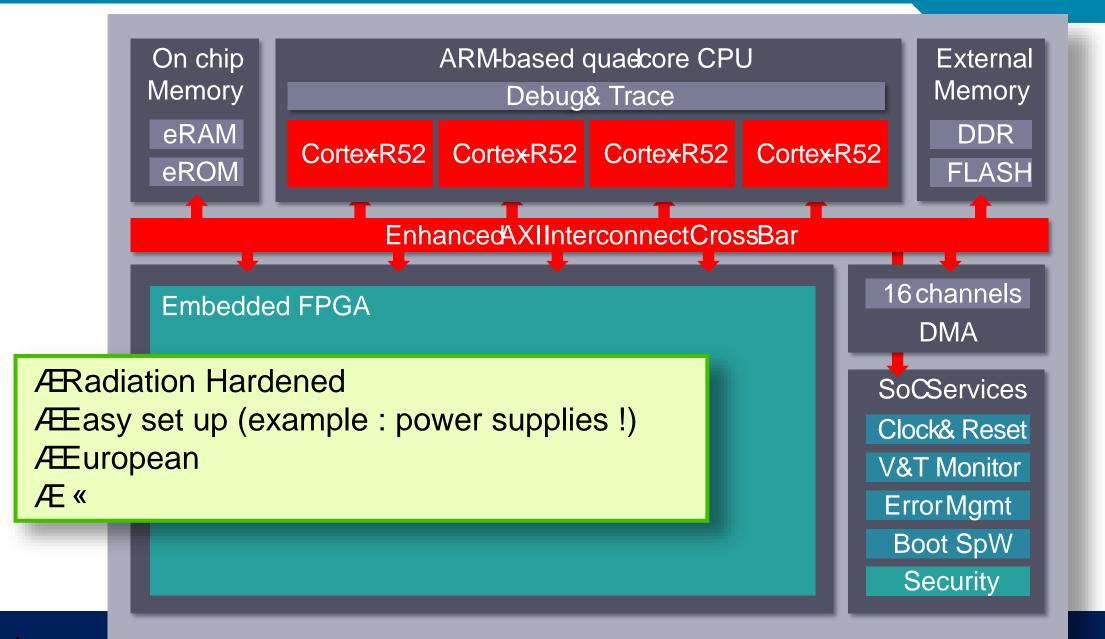
On chip Memory	External Memory
eRAM eROM	DDR FLASH

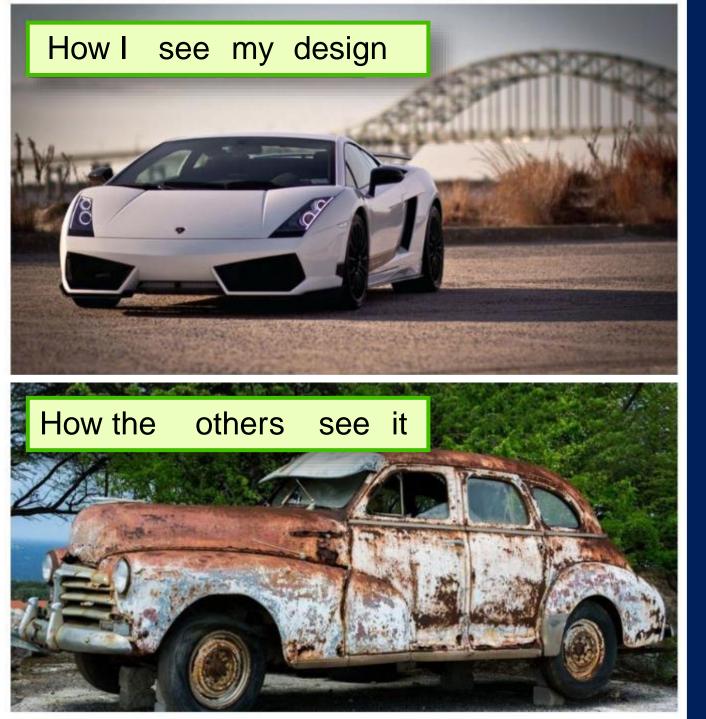
16 channels DMA

ÆBoot eROM + 2 MBytes eRAM w/ ECC ÆMemory interface (volatile) ÆDDR2/DDR3/DDR4 ÆMemory interface (non volatile) ÆBoot NOR Flash Æ16 channels DMA to support memory transfers

Features ±Interconnect

ÆAXI network interconnect (ARM NIC400) ÆQuality of Service (QoS)

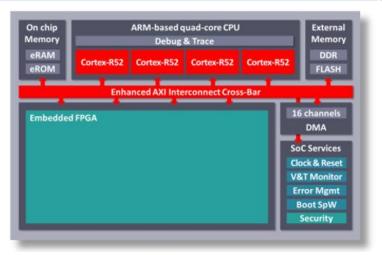

Features ±FPGA matrix


Embedded FPGA

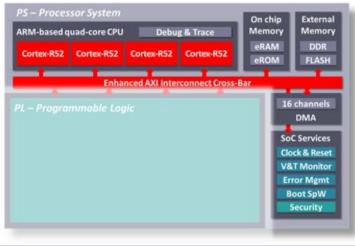
ÆMore than 500 KLUTs programmable matrix ÆHSSL in the FPGA ÆAdditional on-chip services ÆSecurity features (e.g. bitstream encryption)

SoCServices Clock& Reset V&T Monitor Error Mgmt Boot SpW Security

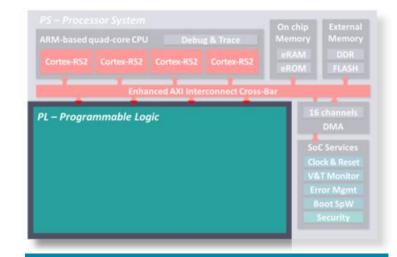
Features ±What else ?


What are the breakthroughs (*) of NG-Ultra architecture and detailed performances ?

Introduction Performances Status Ecosystem Status Use Cases Conclusion


(*) for a rad-hard component

High level performances comparison


SoC + FPGA

SoC only

FPGA only

NG-Ultra FPGA capacity

~530 KLUT

NG-Ultra processing perfo 1 818 CoreMark / core 1 250 DMIPS / core

CPU Performance Æ40 x SCOC3 Æ2 x GR740 FPGA Capacity Æ2 x RTG4 ^(*) Æ25 x RTAX2000 ^(*)

(*) estimation of realistically useable FPGA size at Q1/2023 date, twice more to be expected considering theoretical LUTs resources and the strong momentum deployed on tools improvement

High level performances comparison

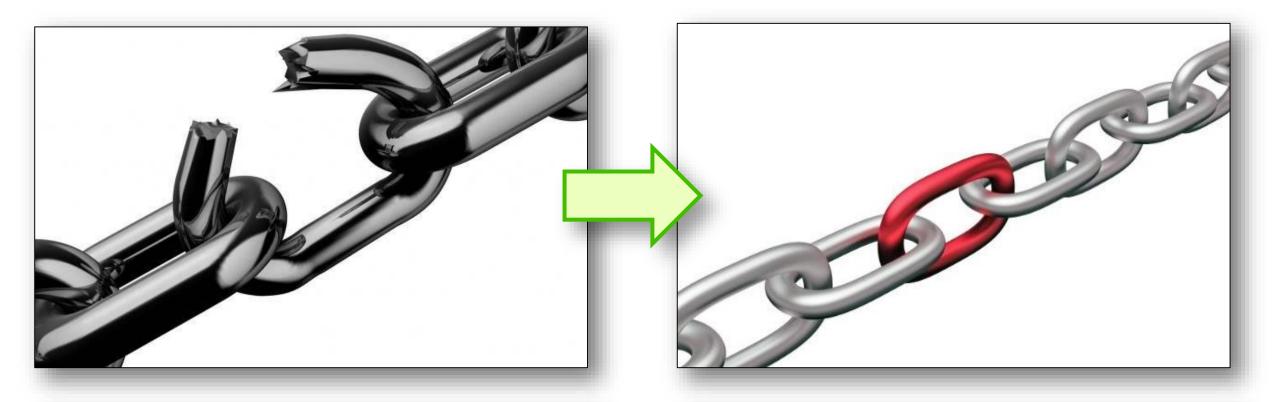
Table: Power Supp	ly Ramp Time				
Symbol	Description				
T _{VCCINT}	-oscription				
T _{VCCINT_IO}	Ramp time from GND to once				On chip Exter
T _{VCCINT_VCU}	Ramp time from GND to 95% of V _{CCINT} Ramp time from GND to 95%	Mir	n Max	v	
T _{VCCO}	Ramp time from as of VCCINT IO	0.2		× Unit	S IROM PLAS
T _{VCCAUX}	Ramp time from Que to 35% of VCCINT Voi	0.2	40	ms	
	Ramp time from as	0.2	40	ms	16 channe
T _{MGTAVCC}	Ramp time from Que of VCCAUX	0.2	40	ms	Sociarity
T _{MGTAVTT}	Ramp time from an of V _{CCBPAN}	0.2	40	ms	Clock & Re
T _{MGTVCCAUX}	Ramp time from GND to 95% of V _{MGTAVCC} Ramp time from GND to 95% of V _{MGTAVTT}		40	ms	V&I Mont Error Mgr
T _{VCC_PSINTFP}	Ramp time from GND to 95% of VMCTU	0.2	40	ms	Boot SpV
T _{VCC_PSINTLP}	Ramp time from GND to 95% of V _{MGTAVTT} Ramp time from GND to 95% of V _{MGTVCCAUX}	0.2	40	ms	
T _{VCC_PSAUX}	Ramp time from GND to 95% of V _{MGTVCCAUX} Ramp time from GND to 95% of V _{CC_PSINTFP}	0.2	40	ms	
TVCC POWE	Ramp time from GND to 95% of V _{CC_PSINTFP} Ramp time from GND to 95% of V _{CC_PSINTLP}	0.2	40		A capacity
T _{VCC_PSINTFP_DDR} T _{VCC_PSADC}	Ramp time from GND to 95% of V _{CC_PSINTEP} Ramp time from GND to 95% of V _{CC_PSAUX}	0.2	40	ms	LUT
T _{VCC_PSPLL}	Ramp time from GND to 95% of V _{CC_PSAUX} Ramp time from GND to 95% of V _{CC_PSINTFP_DDR}	0.2	40	ms	
	Ramp time from GND to 95% of V _{CC_PSINTFP_DDR} Ramp time from GND to 95% of V _{CC_PSADC}	0.2	40	ms	
T _{PS_MGTRAVCC}		0.2	40	ms	
T _{PS_MGTRAVTT}	Ramp time from GND to 95% of V _{CC_PSADC} Ramp time from GND to 95% of V _{CC_PSPLL} Ramp time from GND to 95% of V _{CC_MGTRAVCC}	0.2	40	ms	a althur
T _{VCCO_PSDDR}	Hamp time from Our	0.2	40	ms	Dacity
T _{VCC_PSDDR_PLL}	Ramp time from GND to 95% of V _{CC_MGTRAVTT}	0.2	40 40	ms	

Comparing performances is important but not enough. Many other criteria shall be considered such as package, radiation hardening, cost, hardware setup (memories, power supply « KDUGaZdDUH software ecosystem, ULVN PLWLJDWLRQ RIH[SRUW FRQWURO OLPLWD

Space environment is hostile - Radiations

NG-80WUD UDGLDWLRQ UREXVWO

‡28FDSOI technology intrinsically latch-up immune Æno SEL
‡NG-Ultra tested during 2 radiation campaigns Æno SEFI
‡Robustness confirmed (no SEU, no SEFI) on v1, v2 launched


DDR memory protection Æa game changer

\$\$\product\$ Supporting DDR2, DDR3 and DDR4 / 8-bits & 16-bits devices
\$\$\product\$ Reed-Solomon for SEU high level of memory protection
\$\$\product\$ Robustness against SEFI up to the loss of two 16-bits devices

NG-Ultra architecture approach ±No « weakest link »

Having a high performance and very robust component is not enough, because if it is associated to sensitive components (such as peripheral memories), the overall UREXVWQHVV ZLOO GHSHQGV RQ WKH ³ As an example, if you need to reboot each time you have an upset in a memory, this will drive the way you RSHUDWH \RXU SURFHVVLQJ PRGXOH« WKLV LV DQ LVVXH«

NG-Ultra solves this issue, since (1) it offers a robust Radiation Hardened By Design (RHBD) chip and (2) it provides unprecedented protection mechanisms for all of its peripheral components (Flash, DDR) allowing to XVH LW ZLWKRXW ULVN RI LQWURGXI

What about the ecosystem to develop with NG-Ultra?

Introduction Performances Status Ecosystem Status Use Cases Conclusion

NG-Ultra ±OPERA Study Status

Horizon 2020 was the EU's research and innovation funding programme from 2014-2020

OPERA project objectives were to assess the performances that can be achieved by some designs in NG-ULTRA technology and compare it with performances achieved in reference technologies.

Several designs from low to higher complexity synthesized on both NG-Ultra and RTG4 targets \$\propto ynthesis\$

9Synthesis time Æsimilar performance on both technologies

9Clock frequency Æsimilar performance ~100MHz, Libero/RTG4 slightly better handles complex design 9Resource utilization Æperformance in favor of NG -Ultra factor of 1.5 in nb of LUT, factor 2 improvement on large memories due to NG-Ultra larger BRAM, larger DSP width +++ for algo

Place and Route

9Not easy to obtain a good layout in one run whatever the target Æsimilar performance

NG-Ultra relevance confirmed for ADS future projects

What about first use cases targeted by Airbus with NG-Ultra ?

Introduction Performances Status Ecosystem Status Use Cases Conclusion

NG-Ultra already on ADS Projects - Platform OBC-Ultra

NG-Ultra present in both platform & payload ADS roadmaps

‡Several boards under development ÆQ2 2023 / NG-Ultra+DDR4 demo, Q3 2023 / OBC use case demonstrated with OLYMPE processing board ‡One main component = simplified board design

NG-Ultra-based OBC

#High performances multicore processing @600MHz, FPGA @80MHz #NAND Flash + DDR4 Memory + High Speed Serial Links #Enhanced Security features / Bitstream encryption included #ADHA-compatible format

Highly integrated OBC-Ultra

‡Gain in performances confirmed through studies ‡More than 500kLUT compared to ~20kLUT for previous generation with RTAX2000 ‡More embedded functionalities ‡Very compact product

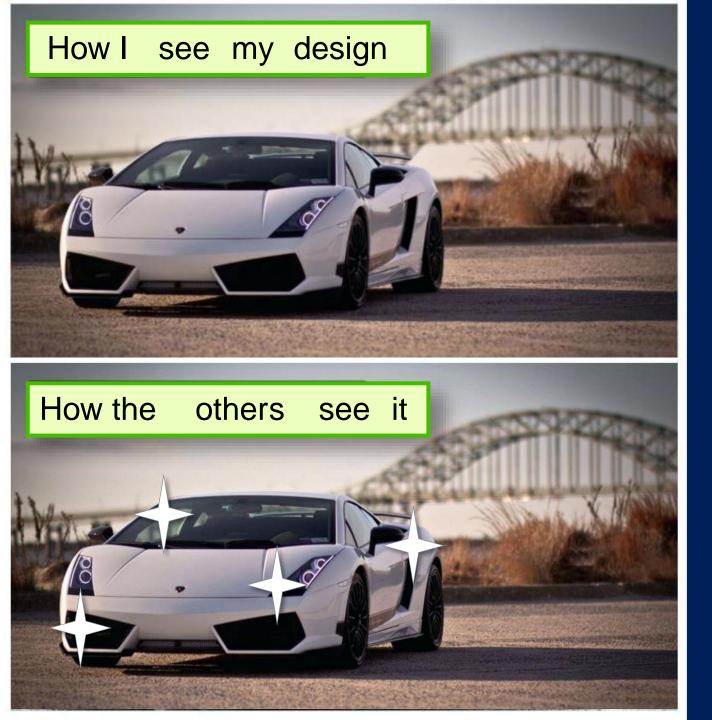
NG-Ultra on ADS Projects - Payload Missions

Payload missions requirements analysis

‡Very performant FPGA (fast clocking, huge matrix)‡High DDR bandwidth‡High Speed Serial Links

NG-Ultra suitability ? Confirmed !

#Huge 500k LUT matrix
#> 1000 Large DSPs
#DDR4 100Gbps
#HSSL


NG-Ultra-based board for payload processing under development at Airbus

DDRA

LASH

HSSI

‡Ground demonstrator ready for Q4 2023

What can be concluded considering the overall picture and status on NG-Ultra ?

Introduction Performances Status Ecosystem Status Use Cases Conclusion

Key Messages Summary

NG-Ultra is unique in the landscape of available Rad Hard components

It is the only European FPGA solution with a SoC

It offers performances & robustness breakthroughs with Huge FPGA + High performance processing

Confidence in tools capacity to meet performances for complex designs use cases (cf OPERA)

NG-Ultra selected as technical baseline on several Airbus D&S on-going projects

Questions:??