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 abstract 
 Convolutional Neural Networks excel at object detection and classification as well as image segmentation; transformers lead the way in sequence analysis, including translation, chatbot and search engine tasks. The value of these algo-

rithms is lost if the inference speed cannot keep up with the application requirements or, just as importantly, power consumption is prohibitively high. We propose a retraining and inference flow that delivers significant reductions in FPGA 

hardware footprint and/or processing time. Using our solution, we were able to quantize ResNet 50, SSD300 and UNet to 5-bit and 4-bit mantissas with no loss of accuracy, reducing FPGA resources and improving performance. 
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 Why block floatIng PoInt? 

                            

 

 

 

 

 

 

 

 

 

 accuracy results 

                            

 

 

  hardWare testIng 

A competitive hardware implementation of an AI algorithm must fit to certain parameters. We can look at a realistic use case where: 

 There are multiple IPs on the chip 

 There is demand for defined – potentially low – frame latency 

 There are several input streams 

 High accuracy is essential 

 Initial outlay and running costs are specified 

 

Where this leads to challenges, a number of interdependent parameters reveal tradeoffs that can and often must be made: 

Throughput: Throughput corresponds with factors such as network size and precision. On our architecture, the newer networks targeting 
efficiency (e.g.: EfficientNet, MobileNets) have at least double the framerate capability of the larger networks (e.g.: ResNet50, Inception) 

Footprint: Doubling the footprint doubles the throughput but decreases the space for additional functions. However, the footprint can be 
reduced by lowering inference precision. This may allow choice of a smaller, cheaper chip 

Network accuracy: Smaller networks tend to have lower accuracy than larger, more robust architectures. Additionally, after a certain 
point, precision reduction, advantageous for throughput and on-chip area usage, will compromise accuracy 

Latency: Smaller networks have lower latency, as do lower precision networks 

 

Our end-to-end quantisation solution provides a way to decrease the architecture footprint and/or processing time as well as latency 
while maintaining accuracy. In all cases the running costs—and potentially the hardware costs—are reduced.  

Our solution splits neatly into three parts: 

1. Neural Network Compression Framework. We add block floating point quantisation for use with the the FPGA AI Suite. Optional retrain-
ing over a few epochs (<13) allows dropped accuracy from lowering the precision to be regained (see table to the right) 

2. OpenVINO provides the following: 

• Model Optimiser converts and optimises the network: batch norm layers are folded into convolutional layers for faster, platform-
agnostic inference 

• Plugins for the specified accelerators 

3. FPGA AI Suite including the Deep Learning Accelerator. A parameterisable soft IP core with overlay architecture that is customisable for a 
specific network or networks. Developed for Intel’s Arria 10 and Agilex FPGAs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our three-part complete solution for efficient inference: NNCF for low precision retraining, OpenVINO for format conversion and DLA for hard-
ware-specific inference 

The DLA is innately tuned for block floating point. Here, floating-point numbers are organized into groups then arranged to share a common ex-
ponent. The block size is parameterised, denoting the number of mantissas sharing the exponent. Tuning block size can be used to trade off 
throughput for footprint savings. 
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The image below shows the conversion of floating point to block floating point. The "1" in the left-most mantissa positions is the implicit 1 in 
floating-point format made explicit prior to conversion. Sign + mantissa bits are now in sign + magnitude integer format. 
 

 

 

 

 

 

 

 

Conversion of floating point to block floating point: blocking of four FP9 floating point values to int5bfp 

 
NB our nomenclature uses the format intXbfp where X represents the mantissa plus sign bit. Int7bfp, for example, has 6 mantissa bits plus the 
sign bit. All values have five exponent bits. 

Certain quantisation precisions work very well on specific devices. For example the Arria 10 DSP blocks contain 18-bit multipliers with 24-bit ac-
cumulators. To make full use of these, we can provide: 

• A single 18-bit x 18 –bit multiply 

• Two 6-bit x 6-bit (int7bfp) multiplies 

• Four 4-bit x 3-bit (int5/4bfp) multiplies 
 

 

 

 

 

 

          Two 6-bit x 6-bit multiplies               Four 4-bit x 3-bit multiplies 

This optimisation is highly advantageous in the case of convolutional neural networks. CNNs are compute-intensive but at specific precisions, the 
mantissas in the simple matrix-matrix multiplications can be packed efficiently into the DSP blocks as above.  

Equally importantly, block floating point has a high dynamic range which models weights and activations well at low precision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Indicative accuracies for networks both with and without retraining at int5/4bfp (int5bfp activations and int4bfp weights), int7bfp and int8bfp. 
n/a shows where retraining is not required 

Several conclusions can be drawn from the table above: 

1. Most networks quantise well to int8bfp and even int7bfp without retraining (green cells) 

2. This accuracy drop is much more pronounced at very low precision (int5/4bfp) 

3. The accuracy drop was exaggerated the more compact the network (EfficientNet, MobileNet, SqueezeNet) 

4. In most cases, any loss was recoverable on retraining with fewer than 12 epochs (“Accuracy with retraining” columns)  

 

It was successfully shown that retraining in block floating point allows augmentation of accuracy to FP32 levels in the vast majority of network 
and precision choices. This gives additional flexibility for real-world implementation. 

 

NOTES: 

Accuracy was regained at very low precision only when activations were represented with at least as many bits as the weights. 

For all cases above, block size is a nominal 32. Inference on hardware confirmed the classification results at both int7bfp and int8bfp. At the time 
of investigation, hardware was not available for validation of lower precisions. Validated was using an Intel® Programmable Accelerator Card with 
Intel® Arria® 10 FPGA in a desktop HP® Z640 machine. 

      Int5/4bfp   Int7bfp   Int8bfp 

Network FP32 accuracy 
reference (%) 

  Accuracy (%) 
without re-
training 

Accuracy (%) 
with retraining 

  Accuracy (%) 
without re-
training 

Accuracy (%) 
with retraining 

  Accuracy (%) 
without re-
training 

Accuracy (%) 
with retraining 

Classification (ImageNet) 

ResNet-18 69.76   55.69 69.13   69.67 n/a*   69.60 n/a 

ResNet-34 73.31   65.09 72.81   72.94 n/a   73.09 n/a 

ResNet-50 76.13   60.32 75.60   75.75 n/a   75.95 n/a 

Inception V3 77.32   32.70 78.34   77.11 n/a   77.31 n/a 

EfficientNet_b0 75.86   0.34 71.96   64.37 75.45   70.48 75.47 

MobileNet V2 71.81   6.00 67.90   67.28 71.65   71.12 n/a 

SqueezeNet V1.1 58.18   33.09 54.90   57.73 58.15   58.10 n/a 

Object Detection (VOC 2007 & 2012) 

SSD300 78.12   73.64 77.92   78.09 n/a   78.08 n/a 

SSD512 80.26   74.72 80.00   80.19 n/a   80.08 n/a 

Object Detection (COCO 2017) 

TinyYOLO v3 35.7   26.90 31.40   35.50 n/a   35.60 n/a 

Semantic Segmentation (CamVid) 

UNet 71.95   63.95 72.36   71.66 n/a   71.89 n/a 

ICNet 67.89   59.66 67.09   67.88 n/a   67.87 n/a 

Measurable benefits come in the form of reductions in hardware resource us-
age that is derived from the lower precisions.  

The overlay structure of the DLA supports both MobileNet v2 and ResNet 50 
on the same architecture, so we can show both on the same graph. 

At block size 32, we show that  precision reduction, as per the efficient pack-
ing methods described, roughly halves the hardware resources each time. In 
select cases the throughput goes up. 

The graphs use int12bfp block size 32 as the baseline reference, which re-
quires the following resource counts: 

  816 M20k RAM blocks 

  551 DSP blocks  

  39k ALMs 

 

 

 

Resource count ratios and framerate for ResNet 50 and Mobile- 
  Net v2 inference at block size 32 on Arria® 10  

 

Re-optimisation of the buffers and bus sizes allows an additional trade-off, 
this time between resource usage and throughput. Reducing the block size to 
16 gives the same decrease in resources seen above, where resource counts 
are a fraction of those we started with. DSP block usage is a quarter of the 
block size 32 usage due to the two-dimensional  reduction in calculations 
from both weights and activations. 

Unsurprisingly, the throughput is also reduced. MobileNet’s is halved, while 
ResNet’s throughput is less than one third its starting point. The latter contains 
many very small convolutions which only add to the cumbersomeness. 

 

 

 

   Resource count ratios and framerate for ResNet 50 and Mobile- 
     Net v2 inference at block size 16 on Arria® 10  

 

  Finally, we give a realistic example of an application that requires MobileNet 
v2 running at a framerate of 30fps.  In this case, a block size of 8 is sufficient, 
which reduces the footprint significantly.  The final figures for int5/4bfp are: 

  103 M20k RAM blocks 

  31 DSP blocks 

  13k ALMs 

 

 

 

 Resource count ratios and framerate for MobileNet v2 inference 

         at block size 8 on Arria® 10             

 

Interestingly, the Intel® Agilex® DSP block provides the ability to pack four 9-bit x 9-bit multiplies. When Agilex DSP blocks are chained together, 
this is equivalent to absorbing the dot product adder tree into the DSP and out of ALM logic. The result is a significant reduction in ALM logic 
when the chosen precision allows use of this mode. Even if floorplan and placement considerations make it undesirable to create long DSP 
chains, this still allows absorption of significant portions of the adder tree. This, combined with the Fmax increase, will affect the precision and 
area trade-offs. Future work will investigate these trade-offs on the Agilex® architecture. 

 conclusIons 

                            

 

 

 

 

 

 

 

 

Many AI applications, particularly in the embedded market, have stringent requirements for power and performance. These are often complicat-
ed by extra functions needed on the chip. A great benefit of FPGAs is that functions such as I/O, clipping, scaling and warping can all be included 
on the same chip as the network. 

When used for streaming, this configuration reduces the need for costly frame buffering and off-chip memory transfers. 

Block floating point itself has two major advantages: 

 It transfers very well to Intel FPGAs, particularly at certain sizes. Efficient DSP block packing allows the footprint reductions seen, taking 
the pressure off the ALMs and the need for storage in RAM 

 It has a high dynamic range, making it adept at retaining and regaining accuracy even t very low precision. A default block size of 32 was 
sufficient to allow larger networks to quantise down to int7bfp without retraining 

 

On leaner, more compact topologies such as MobileNets and EfficientNet, the resultant drop at low precision was overcome by retraining for a 
few epochs. 

The software itself has several benefits. In addition to providing a (re)training facility, it allows the testing of quantising a network for accuracy 
before compiling. 


