

Estimating the Error Rates of Xilinx Zynq-7000 APSoCs in Space Radiation Environments

Vasileios Vlagkoulis^{1,} Dimitris Agiakatsikas¹, Aitzan Sari¹, Ioanna Souvatzoglou¹, Georgios Antonopoulos¹, Mihalis Psarakis¹, Cesar Boatella Polo², Alessandra Costantino², Viyas Gupta², Antonios Tavoularis², Gianluca Furano², Christian Poivey², Veronique Ferlet-Cavrois², Tim Wagner³, Hajdas Wojciech⁴ corresponding authors: {v.vlagkoulis, dagiakatsikas, aitsar, mpsarak}@unipi.gr

Motivation

- Previous works have investigated the impact of protons and heavy ions on the Zynq-7000 APSoC but not for a broad range of particle energies and of LETs
- This introduces uncertainty in predicting radiation-induced upset and error rates in various space radiation environments

X	Kilinx Zynq	-7000 APSo	C
Processing	System (PS) Controllers	Controllers	

Contribution

- Performed additional accelerated radiation tests at PSI (protons) and GSI (heavy ions) to widen the range of tested particle energies and LETs and thus be able to predict upset and error rates more precisely
- Provide cross-sections for both the PL and PS

Accelerated radiation testing

- Paul Scherrer Institute (PSI), Switzerland (2022)
 - Protons Energies: 30 200 MeV
 - Programmable Logic (PL)
 - Static cross-section of Configuration RAM (CRAM), Flip-Flops (FFs), Shift Register LUT (SRLs), and BRAMs
 - Processing System (PS)
 - Static cross-section of L1 & L2 caches and On-Chip Memory (OCM)
 - Dynamic cross-section of benchmarks for various L1-I/L1-D/L2 enable/disable configurations
- CERN, Switzerland (2019) and GSI, Germany (2019, 2022)
 - Heavy-ions Linear Energy Transfer (LET): 2.30 12.45 MeV cm²/mg
 - Programmable Logic (PL)
 - Static cross-section of Configuration RAM (CRAM), Flip-Flops (FFs), Shift Register LUT (SRLs), and BRAMs

Upset and error rates prediction with TRAD's OMERE software

SEU static cross-section of PL memories Protons + CRAM + FF + LUT SRL + LUT DRAM + BRAM + CRAM AFF * SRL BRAM * CRAM Essential 1.00E-07

- Orbit: LEO (800 km, 98.0° inclination)
- Prediction for PL memories considers both heavy ions and protons
- Prediction for PS considers only protons

	In-flare rate			Out-of-flare rate			
Measurements	[per device per day]						
	Heavy ions	Protons	Total	Heavy ions	Protons	Total	
PL – CRAM SEUs	150	160	310	0.2190000	3.03	3.24	
PL – Uncorrectable CRAM MBUs (SEM enhanced mode)	0.0005	1.47	1.47	0.000006	0.03	0.03	
PS – L2 cache SEUs	-	3.54	3.54	-	0.08	0.08	
PS – SDCs - L1 & L2 (dynamic)	-	1.59	1.59	-	0.03	0.03	
PS – Crashes - L1 & L2 (dynamic)	-	0.116	0.116	-	0.002	0.002	
PS – SDCs - L1 only (dynamic)	-	0.019	0.019	-	0.002	0.002	
PS – Crashes - L1 only (dynamic)	-	0.005	0.005	-	0.0004	0.0004	

Conclusions regarding the proton radiation testing

- First to report results for FFs and SLICEM LUTs
- Measured one order of magnitude higher cross-section than reported in the literature
- Cross-section of FF, LUT SRL and LUT DRAM is higher than CRAM

SEU static & dynamic cross-section of PS memories (Protons)

SDC dynamic cross-section of PS benhmarks (Protons)

 CRC32 - All enabled CRC32 - L2 enabled 	 Qsort - All enabled Qsort - L2 enabled
E 1.00E-07	

Test

- Static: One write / multiple reads
- Dynamic: March memory tests \$\$ (w0); \$\$ (r0, w1); \$\$ (r1, w0); \$\$ (r0, w1); \$\$ (r1, w0); \$\$ (r0)
 Comments
- First to report results for L1-D caches
- Highest cross-section at 30 MeV probably caused by low-energy direct ionizing
- Measured higher cross-section for L2 than reported in the literature

Test

Dynamic: MiBench (CRC32, FFT, Qsort, BasicMath, SHA) and MatrixMul

Comments

- L1 cache does not deteriorate the SDC rate as much as L2
- The lower memory footprint and execution time of BasicMath, FFT, SHA and MatrixMul benchmarks compared to CRC32 and QSort result in a lower SDC cross-section

Test

- Dynamic: MiBench (CRC32, Qsort)
 Comments
- CRC32 has a data segment larger than the L2 cache size, which results in frequent L2 cache replacements.
- In contrast, the data segment of Qsort fits in L2, resulting in less frequent L2 replacements.
- Thus, CRC32 has a lower SDC cross-section than Qsort, despite its larger memory footprint