

Image Recognition for Space Applications using Deep Learning on FPGAs & SoCs

Lunar Crater Detection

Stephan van Beek

svanbeek@mathworks.com

European Technical Specialist SoC/FPGA/ASIC Design Flows

© 2023 The MathWorks, Inc.

Artificial Intelligence on Embedded Devices

Machine learning has been deployed on ground segment applications for several years \rightarrow now moving into space

Telemetry Outlier Detection

Geospatial Analytics

Deep Learning Helps Detect Gravitational Waves Hunting for Black Holes with Artificial Intelligence

Max Planck Institute used AI and laser interferometry to detect gravitational waves caused by space-time distortions in our solar system.

Industry Trends

Designs with AI accelerator cores increasing

Unrestricted | © Siemens 2022 | Siemens Digital Industries Software | 2022 Functional Verification Study

SIEMENS

Let's have a look at an example: Lunar Crater Detection

Object Detection with MATLAB

Crater Detection Example

Unique Platform Differentiators

MATLAB is an Interoperable and Integrated Platform for <u>AI-Driven Systems</u>

Data Preparation

Data cleansing and preparation

Simulationgenerated data

Hardware

accelerated training

Interoperability

Simulation & Test

Integration with complex systems

 $-\mathbf{x}$ System verification and validation

Deployment

Embedded devices

Enterprise systems

Edge, cloud, desktop

Spend less time preprocessing and labeling data

Synchronize disparate time series, filter noisy signals, automate labeling of video, and more.

Start with a complete set of algorithms and pre-built models

Al Modeling

Model design and tuning

Hardware accelerated training

Algorithms

Machine learning Trees, Naïve Bayes, SVM...

Deep learning CNNs, GANs, LSTM, MIMO...

Reinforcement learning DQN, A2C, DDPG...

Regression Linear, nonlinear, trees...

Unsupervised learning K-means, PCA, GMM...

Predictive maintenance RUL models, condition indicators...

Bayesian optimization

Pre-built models

Image classification models AlexNet, GoogLeNet, VGG, SqueezeNet, ShuffleNet, ResNet, DenseNet, Inception...

Reference examples

Object detection Vehicles, pedestrians, faces...

Semantic segmentation Roadway detection, land cover classification, tumor detection...

Signal and speech processing Denoising, music genre recognition, keyword spotting, radar waveform classification...

...and more...

Interoperability with Python Based Frameworks

Increase productivity using Apps for design and analysis

Use MATLAB Apps to design deep learning networks, explore a wide range of classifiers, train regression models, train an optical character recognition model, and more.

Experiment Manager app to manage multiple deep learning experiments, analyze and compare results and code

Hardware acceleration and scaling are critical for training

MATLAB accelerates AI training on GPUs, cloud, and datacenter resources without specialized programming.

FPGA is a good choice for lower power deep learning applications

System Requirements Drive Network Design

Challenges of Deploying Deep Learning to FPGA Hardware:

96 filters of 11x11x3 of 32-bit parameters \rightarrow 140k bytes

Customizable Deep Learning Processor

Deep Learning HDL Processor steps

Two Compression Techniques

Pruning deep neural networks

Quantization of deep neural networks

Taylor Approximation Pruning

prunableNetwork = taylorPrunableNetwork(dlnet)

Recurrent Neural Networks (RNN) can be simplified by compressing LSTM Layers

- **Data:** time series of temps/currents/voltages \rightarrow predict state of charge at each time step
- **Model**: Recurrent regression NN with two LSTMs

|--|

ucu Layei Piuliilia

41.8k	8	0 🔺	0 🕕
total learnables	layers	warnings	errors

2

163 Ak

- Memory Footprint: **1.85 MB** \rightarrow **167 KB** (**91%** reduction)
- Inference Latency: 3.3 sec \rightarrow 1.7 sec (48% reduction) —

Deep Network Quantizer - Int8 Quantization

Quantize Deep Learning Network and Processor in MATLAB

Converge on an FPGA-Optimized Deep Learning Network

Integrate the Deep Learning Processor into your bigger system

- Generate Generic Deep Learning Processor IP core
- Define clean input/output frame hand-shaking protocol
- Drop the generated Deep Learning IP core into your bigger system

Network Examples

Network Examples	Application Area	Туре	Release	
VGG16/VGG19	Classification	CNN		
Darknet19	Classification	CNN		
ResNet18/ResNet50	Classification/Detection	CNN	R 2021 b	
YOLO v2	Object detection	CNN		
MobileNet v2	Classification/Detection	CNN		
1-Dimentional CNN networks	Classification/Detection	CNN	R2022a	
Segmentation networks	Segmentation	CNN		
LSTM networks	Signal processing	RNN	R 2022 b	
YOLO v3	Object detection	CNN, MIMO		
GRU network	Signal processing	RNN	R2023a	
YAMnet (Audio toolbox)	Classification/Detection	CNN		

Why MATLAB & MathWorks for AI?

Examples

Deep Learning HDL Toolbox

- Get Started with Deep Learning HDL Toolbox
- Prototype Deep Learning Networks on FPGA
- Deep Learning Processor Customization and IP Generation
- System Integration of Deep Learning Processor IP Core
- Deep Learning INT8 Quantization

5 tworks on FPGA

14

5

3

5

Create, compile, and deploy a dlhdl.Workflow object that has a convolutional neural network. The network can detect and output lane Open Live Script

Image Category Classification by Using Deep Learning

Create, compile, and deploy a dlhdl.Workflow object with alexnet as the network object by using the Deep Learning HDL Toolbox" Open Live Script

Image Classification Using **DAG Network Deployed to** FPGA

Train, compile, and deploy a dlhdl.Workflow object that has ResNet-18 as the network object by using the Deep Learning HDL

Vehicle Detection Using DAG

Network Based YOLO v2

Train and deploy a you look only

once (YOLO) v2 object detector.

Open Live Script

Deployed to FPGA

Open Live Script

Defect Detection

Deploy a custom trained series network to detect defects in objects such as hexagon nuts. The custom networks were trained by using

Open Live Script

around Truth: bic+bic, Prediction FPGA: bic+bic

Bicyclist and Pedestrian

Deploy a custom trained series

bicyclists based on their micro-

network to detect pedestrians and

Doppler signatures. This network is

Classification by Using FPGA

Prototype and Verify Deep Learning Networks Without **Target Hardware**

Rapidly prototype your custom deep learning network and bitstream by visualizing intermediate layer activation results and verifying

Open Live Scrip

Feed an image to a convolutional neural network and display the activations of the different layers of the network. Examine the activations

Open Live Script

Running Convolution-Only Networks by Using FPGA Deployment

Open Live Script

convolution layers followed by one or more fully connected layers.

Vehicle Detection Using YOLO v2 Deployed to FPGA

Deep learning is a powerful machine learning technique that you can use to train robust object detectors. Several techniques for object

Classify ECG Signals Using **DAG Network Deployed To** FPGA

Classify human electrocardiogram (ECG) signals by deploying a trained directed acyclic graph (DAG) network.

Open Live Script

Open Live Script

Training Resources

Machine Learning Onramp

6 modules | 2 hours | Languages

Learn the basics of practical machine learning methods for classification problems.

Machine Learning with MATLAB 7 modules | 12 hours | Languages Explore data and build predictive models.

Deep Learning Onramp 5 modules | 2 hours | Languages Get started quickly using deep learning methods to perform image recognition.

Deep Learning with MATLAB

13 modules | 8 hours | Languages Learn the theory and practice of building deep neural networks with real-life image and sequence data.

Reinforcement Learning Onramp

5 modules | 3 hours | Languages

¢100

Master the basics of creating intelligent controllers that learn from experience.

https://matlabacademy.mathworks.com/

Deep Learning Onramp

Start course

Share | Certificate | Settings

Course Description

Get started quickly using deep learning methods to perform image recognition.

Course Author Renee Bach

FormatSelf-paced onlineDuration2 hoursLanguageEnglish (set language)

Modules

Introduction 5 min

- Using Pretrained Networks 20 min
- > Managing Collections of Image Data 30 min
- > Performing Transfer Learning 60 min
- Conclusion 10 min

MathWorks training options for AI topics

Resources for Further Learning

- Crater Detection Deep Learning
 - Deep Learning Solutions in MATLAB
 - <u>Deep Learning Verification Library</u>
 - Deep Learning Models
 - MATLAB with TensorFlow and PyTorch
 - Importing Models from TensorFlow, PyTorch, and ONNX
 - <u>TensorFlow-Keras Layers Supported for Conversion into Built-In MATLAB Layers</u>
 - <u>What's New in Interoperability with TensorFlow and PyTorch</u>
- Crater Detection Deep Learning → FPGA
 - <u>Deep Learning HDL Toolbox</u>
 - Deep Learning HDL Toolbox Supported Networks, Layers, Boards and Tools

R2022b

Neuron Coverage for Deep Learning

https://github.com/matlab-deep-learning/neuron-coveragefor-deep-learning

<u>⊳</u>

imageinput imageInputLayer

Batch

Deep Learning Toolbox Verification Library

Verify deep learning network robustness against adversarial examples and to compute the output bounds for a set of input bounds.

https://www.mathworks.com/help/deeplearning/deep-learning-verification.html https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library

MathWorks

R2022b