Evolving the NG-ULTRA and NG-LARGE SoC software ecosystem

5th SEFUW - ESTEC - March 2023

Miguel Masmano – mmasmano@fentiss.com

The company

fentISS at a glance

PRODUCTS

XtratuM Hypervisor

Partition Guest Operating Systems (LithOS, RTEMS BSP, Linux BSP)

Support Tools: Configuration, Real-Time Scheduling, Observability & Simulation

SERVICES

Support Porting and customization Training

EU H2020, HEP ESA Projects CNES Projects

RESEARCH EXPERTISE

LEO missions with fentISS' products

Deep space missions with fentISS' products

NG-ULTRA

HERMES project: basic data

Qualification of High pErformance pRogrammable Microprocessor and dEvelopment of Software ecosystem

- Start date 1 March 2021, end data 29 February 2024
- Grant agreement ID: 101104203
- Total cost: 3 059 001,25 €
- Topic: SPACE-10-TEC-2018-2020 Technologies for European non-dependence and competitiveness
 - Call for proposal H2020-SPACE-2018-2020
 - Sub call: H2020-SPACE-2020
- Funding scheme: RIA (Research and Innovation action)

HERMES project: consortium

HERMES project: objectives

Main objectives to reach a TRL6 from TRL4

- a) Development and testing of very complex ceramic hermetic package CGA 1760
- b) Space ECSS evaluation of the rad-hard FPGA (NG-ULTRA) developed under ESA, CNES and EU projects
- c) Development and validation by end-users of several software tools including BAMBU HLS (High Level Synthesis), XtratuM-NG (XNG) hypervisor and BL1

HERMES project: fentISS contributions

- Integrating NG-ULTRA support in XtratuM-NG (XNG)
 - Updating related supporting tools (xcparser, xci, xcon, xtraceviewer)
 - Delta-qualifying XNG for ECSS category-B
- Adapting RTEMS as a XNG NG-ULTRA partition
- Adapting MMU-less Linux as a XNG NG-ULTRA partition

NG-ULTRA main challenges

A) Lack of cache coherence among cores at hardware level

- Software must be aware, several approaches are possible:
 - Disabling L1 cache for shared resources
 - . Invalidating L1 cache before accessing a shared resource
- B) Global exclusive monitors only supported by ERAM
 - . Atomic and locks must be located at ERAM
- C) Each CPU cluster integrates its own isolated GIC distributor
 - IPIs cannot be notified among clusters
 - . [Solved] By using the Multi-Cluster Interrupt Controller (MCIC) soft IP
 - Developed by ADS-F and TAS-F within the scope a CNES' study
 - . Allows us to notify IPIs as SPIs

XNG for NG-ULTRA (I)

- XNG 1.4.5 selected as baseline
 - SMP model implemented (4 cores)
 - A) Cache coherence issue solved by software at hypervisor level
 - At partition level, partition must manage this lack of coherence by itself
 - B) All atomic and lock variables located at ERAM
 - XNG takes advantage of the Cortex-R52 virtualization support
 - Hypervisor runs on PL2
 - Partitions run on PL1&PL0
 - Requires
 - MCIC soft IP (IPIs generation among cores)
 - BL1 bootloader (HERMES outcome)
- . Current status
 - Prototype available
 - ECSS delta qualification started

XNG for NG-ULTRA (II)

XNG for NG-ULTRA QDP

- 1. Software Development Plan (SDP)
- 2. Software Configuration Management Plan (SCMP)
- 3. Software Configuration File (SCF)
- 4. Software Requirements Specification (SRS)
- 5. Interface Control Document (ICD)
- 6. Software Design Document (SDD) common
- 7. SDD AARCH32-PMSA-FV
- 8. XNG AARCH32-PMSA-FV+NG-ULTRA operational package
- 9. Software User Manual (SUM) common
- 10. SUM AARCH32-PMSA-FV
- 11. Software Integration Test Plan (SITP) common
- 12. SITP AARCH32-PMSA-FV
- 13. Software Integration Test Report (SITR) AARCH32-PMSA-FV
- 14. Software Unit Test Plan (SUTP) common
- 15. SUTP AARCH32-PMSA-FV

- 16. Software Unit Test Report (SUTR) AARCH32-PMSA-FV
- 17. Software Validation Plan (SValP)
- 18. Software Validation Specification (SVS)
- 19. SVS AARCH32-PMSA-FV
- 20. Software Validation Report (SValR) AARCH32-PMSA-FV
- 21. Acceptance tests TN
- 22. Acceptance tests suite
- 23. Acceptance tests SVS,
- 24. Acceptance tests SValR template
- 25. ECSS Compliance Report (ECR)
- 26. Software Product Assurance Plan (SPAP)
- 27. Software Product Assurance Milestone Report (SPAMR)
- 28. Software Verification Plan (SVerP)
- 29. Software Verification Report (SVR)

RTEMS BSP for NG-ULTRA

- . ESA RTEMS6 QDP selected as baseline
- . Two flavors
 - RTEMS BSP mono-core
 - RTEMS BSP SMP (first approach)
 - A) Cache coherence issue bypassed by keeping cache disabled
 - Performance degradation
 - B) libatomic library updated for instantiating variables in ERAM
 - RTEMS core and application impacted
- Current status
 - Prototypes available
 - Under validation by using RTEMS test suite

MMU-less Linux BSP for XNG NG-ULTRA (I)

- Kernel 6.10 selected as baseline
 - Only mono-core version is supported
 - Created a new Linux XNG-ARM-R BSP
- Standard distributions are not supported by MMU-less Linux
 - MMU-less Linux root filesystem based on busybox created for this porting
- . Integrated XNG inter-partition communication (IPC) support
 - Applications can interact with other partitions

MMU-less Linux BSP for XNG NG-ULTRA (II)

Linux applications implement the FDPIC ABI

- Features
 - Suitable for the MMU-less Linux execution environment
 - Supports shared libraries
 - Supports static binaries
 - Supports multi-threading
- Drawbacks
 - **Static stack**: the processes stack cannot grow dynamically so it is allocated at compile time
 - fork() vs vfork(): Only vfork() is supported, vfork() stops the parent execution until either exec() or exit() are called by the child process
 - malloc(): Implemented using a shared memory pool
 - No memory protection between applications: Only the kernel is protected by the MPU

MMU-less Linux BSP for XNG NG-ULTRA (III)

\ _	- '\ _\
_ _ \ \/ _ _ __/	_\
/ # /usr/bin/userapp-xng-ipc	
Hello from Linux C application! This is a	communication example between XRE and linux partition
Linux: Sampling Port IRQ! vCpu: 0	
Linux: S message [SMessFromXRE]: 0	
Linux: 5 new Q messages:	
[QMessFromXRE]: 0 [OMessFromXRE]: 1	
[QMessFromXRE]: 2	
[QMessFromXRE]: 3	
[QMessFromXRE]: 4	XRE: Sampling Port TROL VCnu: 1
	XRE: S message [SMessFromLinux]: 0
Linux: Sampling Port IRQ! vCpu: 0	
Linux: S message [SMessFromXRE]: 1	
	XRE: QUEUING PORT IRQ! VCPU: 0 XRE: 5 new 0 messages:
	[OMessFromLinux]: 0
	[QMessFromLinux]: 0 [QMessFromLinux]: 1
	[QMessFromLinux]: 0 [QMessFromLinux]: 1 [QMessFromLinux]: 2

NG-LARGE

XtratuM-NG porting and qualification on NG-LARGE

- . CNES study
 - Step required for enabling the use of CNES' LVCUGEN
- . Goals
 - Adding NG-LARGE support to XNG
 - Validating LithOS for running as XNG NG-LARGE partition
 - Delta qualifying both softwares for ECSS category B

NG-LARGE main challenges

- The SoC only integrates a Cortex-R5
- CNES provides the required soft IPs (AMBA bus, UART, BRAM, SRAM, …)
 - Lack of interrupt controller
 - . Solved at software level
 - Lack of DRAM memory controller
 - . Under development

XtratuM-NG for NG-LARGE (I)

- XNG 1.4.5 selected as baseline
 - Mono-core model implemented (1 core)
 - Tested with small systems (< 512KB)
 - · Waiting the availability of a SDRAM memory controller
- Hardware virtualisation not supported
 - Partitions must be para-virtualised
 - Hypervisor runs on PL1
 - Partitions run on PL0
- Current status
 - Prototype available
 - ECSS delta qualification started

XtratuM-NG for NG-LARGE (II)

XNG for NG-LARGE QDP

- 1. Software Development Plan (SDP)
- 2. Software Configuration Management Plan (SCMP)
- 3. Software Configuration File (SCF)
- 4. Software Requirements Specification (SRS)
- 5. Interface Control Document (ICD)
- 6. Software Design Document (SDD) common
- 7. SDD ARMv7R-PMSA-PV
- 8. XNG ARMv7R-PMSA-PV+NG-LARGE operational package
- 9. Software User Manual (SUM) common
- 10. SUM ARMv7R-PMSA-PV
- 11. Software Integration Test Plan (SITP) common
- 12. SITP ARMv7R-PMSA-PV
- 13. Software Integration Test Report (SITR) ARMv7R-PMSA-PV
- 14. Software Unit Test Plan (SUTP) common
- 15. SUTP ARMv7R-PMSA-PV

- 16. Software Unit Test Report (SUTR) ARMv7R-PMSA-PV
- 17. Software Validation Plan (SValP)
- 18. Software Validation Specification (SVS)
- 19. SVS ARMv7R-PMSA-PV
- 20. Software Validation Report (SValR) ARMv7R-PMSA-PV
- 21. Acceptance tests TN
- 22. Acceptance tests suite
- 23. Acceptance tests SVS,
- 24. Acceptance tests SValR template
- 25. ECSS Compliance Report (ECR)
- 26. Software Product Assurance Plan (SPAP)
- 27. Software Product Assurance Milestone Report (SPAMR)
- 28. Software Verification Plan (SVerP)
- 29. Software Verification Report (SVR)

Thank you for your attention!

