
New Open Source Design
Verification Tools from YosysHQ

N. Engelhardt, C. Wolf

Yosys

Yosys – a swiss army knife for netlists

● Open Source project started in 2012 by Claire Wolf
○ Originally a synthesis tool for an academic CGRA
○ Grew in capabilities and language support

● Now a tool that can be applied in many different contexts,
anytime you need to transform netlists

○ Used as "glue" between many third-party tools
○ And for architecture exploration
○ But also a fully-fledged synthesis tool, used e.g. in the OpenLANE ASIC flow and by some

FPGA vendors

Yosys – input and output formats

● Input formats:
○ Verilog
○ JSON
○ Aiger
○ Blif
○ Liberty
○ VHDL (GHDL plugin)

● Commercial Edition adds:
○ SystemVerilog
○ SystemVerilog Assertions
○ VHDL

● Output formats
○ Verilog
○ JSON
○ Blif
○ EDIF
○ FIRRTL
○ Aiger
○ SMT2
○ BTOR2
○ C++ (simulation)
○ Truth table

Full List of Commands:
https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html

https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html

Yosys – Transformations

● General structure of Yosys-based flows
○ Run commands to read and elaborate the design
○ Run coarse-grain optimization commands
○ (Optional: Map to a fine-grain representation and run fine-grain optimizations)
○ Run back-end command to write design to output file

● Creating custom functionality using existing passes
○ Yosys has a rich set of commands to

■ Elaborate, simplify, infer, synthesize, technology map, simulate, …
■ See https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html

○ One can get very far with creative selections of design elements and combinations of passes

● Creating custom functionality using custom passes
○ Techmap rules (module substitution - verilog file with special names)
○ Plugins (C++) can add custom passes with the same API used by internal passes
○ Pattern Matcher Generator - find subgraphs and modify/replace them

https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html

Yosys-based Tools

SBY – formal property checking with Yosys

● Frontend for formal flows
○ Allows easy use of SystemVerilog assume(), assert(), cover() statements

■ Complex SVA properties/sequences are supported with the commercial version
○ SBY has modes for bounded and unbounded proofs

■ Support for different unbounded proof methods (k-induction, pdr/ic3)

● Automates the steps for running formal proofs with Yosys
○ Yosys translation of design to formal problem formats (SMT2, BTOR2, Aiger…)
○ Running solvers to find a set of signal values responding to the problem (or not)

■ Allows using many solvers being developed by researchers
○ Using Yosys to translate the set of variable assignments back into a VCD trace

● Myriad of different input/output formats “under the hood”
○ SBY provides a uniform interface for a wide range of solvers, hiding those differences.

● Example projects:
○ riscv-formal: formally verify ISA compliance (rv32imc/rv64imc) https://github.com/YosysHQ/riscv-formal/
○ AXI4 formal verification IP (requires SVA support) https://github.com/YosysHQ-GmbH/SVA-AXI4-FVIP

https://github.com/YosysHQ/riscv-formal/
https://github.com/YosysHQ-GmbH/SVA-AXI4-FVIP

SBY – formal property checking with Yosys

MCY – Mutation Coverage with Yosys

● Mutation coverage is a coverage metric for testbenches
○ Solves the issue of false negatives that is inherent to execution/branch coverage
○ Introduce modifications to the DUT and see if each modification causes the tests to fail
○ Yosys modifies the netlist and outputs a modified module to instantiate in the testbench
○ Works with any self-checking test environment that accepts a synthesized DUT

● Main Problem with Mutation coverage: False Positives
○ Some mutations don't violate the design spec, so it’s fine for the test bench not to fail for them

● MCY Solution: Filter False Positives with formal equivalence checks
○ Create a miter circuit with mutated and non-mutated design, to let the formal method investigate the

functional change introduced by such a mutation
○ Optional: Write properties taking into account when differences are relevant

■ e.g., only compare data if data_valid is high
■ Much easier than writing formal properties about the expected value of data

○ Mutations that create no relevant functional change are discarded automatically
○ Can run the formal checks in SBY, or interface with formal tools from other vendors

MCY – Mutation Coverage with Yosys

MCY for fault tolerance testing

● MCY test specification is generic - the same infrastructure for testbench tests
and formal equivalence check

● The pass/fail logic is also customizable
● Mutations are always single-bit changes

⇒ Can apply the same tool to introduce mutations into fault-tolerant netlists
and check that the output does not change after mutation

Demo: https://github.com/nakengelhardt/faultinjection_mcy

https://github.com/nakengelhardt/faultinjection_mcy

EQY – Equivalence Checking with Yosys

● Initial Release this Month: Our brand new Equivalence Checking Tool \o/

● Identifies matching points in two designs
○ Then partitions the design into smaller pieces that can be checked independently
○ Scales much better than using SBY on a miter circuit
○ Much easier to identify parts of design that cause scaling issues

● Application Domains
○ Ensure post-synthesis netlist is the same as input design
○ Check that a non-functional change does not change the behavior of the design

● Example/Tutorial Projects included with the tool
○ Verification of a design change in ALU/shifter architecture in NERV RISC-V Processor
○ Verification of Xilinx Vivado synthesis output for PicoRV32 processor design

EQY – Equivalence Checking with Yosys

SCY – Sequence of Covers with Yosys

● Sneak peek at our next development:

A formal methodology and tool for generating long cover traces for large
designs, based on “checkpoint” cover properties, that the tool eagerly
solves one-by-one, using the final state of one property as the initial state
of the next.

● Example Applications:
○ Creating formal cover traces for complex bus interactions on large SoC designs.
○ Using formal tools to create a assembler programs to put a processor in difficult to reach

states of its state-space

Data-Flow Properties

● With SCY we will also introduce a methodology for formal data-flow properties, for
example:

○ Cover a trace that shows top.Bus.ComponentA.DOUT_VALID and
top.Bus.ComponentA.DOUT_READY active in cycle t1,

○ and top.Bus.ComponentB.DIN_VALID and
top.Bus.ComponentB.DIN_READY active in cycle t2,

○ and top.Bus.ComponentB.DIN_DATA at t2 is a function of
top.Bus.ComponentA.DOUT_DATA at t1.

● Where “is a function of” means we can show data-flow (of a configurable kind) from
the input to the output.

● This functionality is especially useful for the kind of properties we are building SCY
for, but will be made available in all our formal flows.

nextpnr

nextpnr – Open Source P&R

● API-driven cross-platform P&R
tool

○ Each FPGA family can choose
different internal data structures as
suits the project

● Currently supported
Architectures:

○ Lattice iCE40, ECP5, Nexus
○ Gowin LittleBee
○ Experimental: Cyclone V,

MachXO2

● https://github.com/YosysHQ/
nextpnr

https://github.com/YosysHQ/nextpnr
https://github.com/YosysHQ/nextpnr

Get the Tools

Try it out!

● Download nightly builds of the OSS CAD Suite
○ https://github.com/YosysHQ/oss-cad-suite-build/releases/latest
○ Includes Yosys, SBY, MCY, all dependencies, supported solvers, GHDL plugin (linux only)
○ Also nextpnr, Amaranth, cocotb, …

● Documentation: https://yosyshq.readthedocs.io/en/latest/

● Ask me for an evaluation license to the commercial Tabby CAD Suite
○ Email contact@yosyshq.com or tick a box on https://www.yosyshq.com/contact

● Or try our "formal taster" package
○ 2 hours of tailored video support to help you get started
○ Save 33% - just 1800 Euros for 3 months.

https://github.com/YosysHQ/oss-cad-suite-build/releases/latest
https://yosyshq.readthedocs.io/en/latest/
mailto:contact@yosyshq.com
https://www.yosyshq.com/contact

Q&A

