7/ /S TN L —
I / \ R
‘ YosysHO

New Open Source Design

Verification Tools from YosysHQ
N. Engelhardt, C. Wolf

o

' YosysHO

Yosys

‘ YosysHO

Yosys — a swiss army knife for netlists

e Open Source project started in 2012 by Claire Wolf

o Originally a synthesis tool for an academic CGRA
o Grew in capabilities and language support

e Now a tool that can be applied in many different contexts,

anytime you need to transform netlists
o Used as "glue" between many third-party tools
o And for architecture exploration
o But also a fully-fledged synthesis tool, used e.g. in the OpenLANE ASIC flow and by some
FPGA vendors

. YosysHO

Yosys — input and output formats

e Input formats: e Output formats
o \Verilog o \Verilog
o JSON o JSON
o Aiger o BIif
o BIif o EDIF
o Liberty o FIRRTL
o VHDL (GHDL plugin) o Aiger
_ - o SMT2
e Commercial Edition adds: o BTOR?
o SystemVerilog o C++ (simulation)
o SystemVerilog Assertions o Truth table

o VHDL

Full List of Commands:
https://yosyshq.readthedocs.io/projects/vosys/en/latest/cmd ref.html

https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html

. YosysHO

Yosys — Transformations

e General structure of Yosys-based flows
o Run commands to read and elaborate the design
o Run coarse-grain optimization commands
o (Optional: Map to a fine-grain representation and run fine-grain optimizations)
o Run back-end command to write design to output file
e Creating custom functionality using existing passes
o Yosys has a rich set of commands to
m Elaborate, simplify, infer, synthesize, technology map, simulate, ...
m See https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html
o One can get very far with creative selections of design elements and combinations of passes

e Creating custom functionality using custom passes
o Techmap rules (module substitution - verilog file with special names)
o Plugins (C++) can add custom passes with the same API used by internal passes
o Pattern Matcher Generator - find subgraphs and modify/replace them

https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html

' YosysHO

Yosys-based Tools

. YosysHO
SBY — formal property checking with Yosys

Frontend for formal flows
o Allows easy use of SystemVerilog assume (), assert (), cover () statements
m Complex SVA properties/sequences are supported with the commercial version
o SBY has modes for bounded and unbounded proofs
m Support for different unbounded proof methods (k-induction, pdr/ic3)

e Automates the steps for running formal proofs with Yosys
o Yosys translation of design to formal problem formats (SMT2, BTORZ2, Aiger...)
o Running solvers to find a set of signal values responding to the problem (or not)
m Allows using many solvers being developed by researchers
o Using Yosys to translate the set of variable assignments back into a VCD trace

e Myriad of different input/output formats “under the hood”
o SBY provides a uniform interface for a wide range of solvers, hiding those differences.

Example projects:
o riscv-formal: formally verify ISA compliance (rv32imc/rv64imc) https://qithub.com/YosysHQ/riscv-formal/
o AXI4 formal verification IP (requires SVA support) https://github.com/YosysHQ-GmbH/SVA-AXI4-EVIP

https://github.com/YosysHQ/riscv-formal/
https://github.com/YosysHQ-GmbH/SVA-AXI4-FVIP

. YosysHO

SBY — formal property checking with Yosys

module demo (

input clk,

output reg [5:0] counter
);

initial counter = 0;

always @(posedge clk) begin
if (counter == 15)
counter <= 0;
else
counter <= counter + 1'b1;
end

“ifdef FORMAL
always @(posedge clk) begin
assert (counter < 32);
end
‘endif
endmodule

[options]
mode bmc
depth 3

[engines]
smtbmc

[script]
read -formal demo.sv
prep -top demo

[files]
demo.sv

sby -f demo.sby
SBY 18:06:15 [demo] Removing directory '/Users/nak/Source/sby/docs/examples/quic
kstart/demo’ .
SBY 18:06:15 [demo] Copy '/Users/nak/Source/sby/docs/examples/quickstart/demo.sv
' to '/Users/nak/Source/sby/docs/examples/quickstart/demo/src/demo.sv'.
SBY 18:06:15 [demo] engine_8: smtbmc
SBY 18:06:15 [demo] base: starting process "cd demo/src; yosys -ql ../model/desi
gn.log ../model/design.ys"
SBY 18:06:15 [demo] base: finished (returncode=0)
SBY 18:06:15 [demo] prep: starting process "cd demo/model; yosys -ql design_prep
.log design_prep.ys"
SBY 18:06:15 [demo] prep: finished (returncode=0)
SBY 18:06:15 [demo] smt2: starting process "cd demo/model; yosys -ql design_smt2
.log design_smt2.ys"
SBY 18:06:15 [demo] smt2: finished (returncode=0)
SBY 18:06:15 [demo] engine_0: starting process "cd demo; yosys-smtbmc --presat -
-unroll --noprogress -t 3 --append @ --dump-vcd engine_8/trace.vcd --dump-yw en
gine_@/trace.yw --dump-vlogtb engine_@/trace_tb.v --dump-smtc engine_8/trace.smt
¢ model/design_smt2.smt2"
SBY 18:06:15 [demo] engine_0: ##
SBY 18:06:15 [demo] engine_0: ##
SBY 18:06:15 [demo] engine_@: ##
SBY 18:06:15 [demo] engine_0: ##
SBY 18:06:15 [demo] engine_0: ##
SBY 18:06:15 [demo] engine_0: ##

:00:00 Solver: yices

:00:00 Checking assumptions in step 0..
:00:00 Checking assertions in step ©..
:00:00 Checking assumptions in step 1..
:00:00 Checking assertions in step 1..
:00:00 Checking assumptions in step 2..
SBY 18:06:15 [demo] engine_0: ## :00:00 Checking assertions in step 2..
SBY 18:06:15 [demo] engine_0: ## :00:00 Status: passed

SBY 18:06:15 [demo] engine_@: finished (returncode=0)

SBY 18:06:15 [demo] engine_0: Status returned by engine: pass

SBY 18:06:15 [demo] summary: Elapsed clock time [H:MM:SS (secs)]: 0:00:00 (0)
SBY 18:06:15 [demo] summary: Elapsed process time [H:MM:SS (secs)]: 0:00:00 (0)
SBY 18:06:15 [demo] summary:

SBY 18:06:15 [demo] summary:

SBY 18:06:15 [demo] DONE (PASS, rc=0)

DO ®

. YosysHO

MCY — Mutation Coverage with Yosys

e Mutation coverage is a coverage metric for testbenches

Solves the issue of false negatives that is inherent to execution/branch coverage
Introduce modifications to the DUT and see if each modification causes the tests to fail
Yosys modifies the netlist and outputs a modified module to instantiate in the testbench
Works with any self-checking test environment that accepts a synthesized DUT

o O O O

e Main Problem with Mutation coverage: False Positives
o Some mutations don't violate the design spec, so it’s fine for the test bench not to fail for them

e MCY Solution: Filter False Positives with formal equivalence checks
o Create a miter circuit with mutated and non-mutated design, to let the formal method investigate the
functional change introduced by such a mutation
o Optional: Write properties taking into account when differences are relevant
m e.g., only compare data if data_valid is high
m Much easier than writing formal properties about the expected value of data
o Mutations that create no relevant functional change are discarded automatically
o Can run the formal checks in SBY, or interface with formal tools from other vendors

MCY —

Mutation Coverage with Yosys

' YosysHO

Loptions] 'eoe
size 1000
tags COVERED UNCOVERED NOCHANGE EQGAP FMONLY
[script] module bitent (
read -sv bitcnt.v // data input
prep -top bitent input [63:0] din_data, // input value
[files] input [2:0] din_func, // function
bitent.v
// data output
[logic] output [63:0] dout_data // output value
use_formal = False);
th_okay = (result("test_sim") == "PASS") // funcl2:0] Function
eq_okay = (result("test_eq") "PASS") /] —————— ——_————
// o @ @ CLZ 64
if tb_okay and use_formal: // @0 @ 1 (CLZ_ 32
tb_okay = (result("test_fm") == "PASS") iy
if not tb_okay: . g i 2 cg_ﬁg
tag("FMONLY") 7 €1z 3
// 1 @ @0 (NT_64
if tb_okay and not eq_okay: Y il T CNT_32
tag("UNCOVERED") // 1 1 0 s*unused%
elif not tb_okay and not eq_okay: 7/ 11 1 sunuseds

tag("COVERED")
elif tb_okay and eq_okay:
tag("NOCHANGE")

elif not tb_okay and eq_okay:

tag("EQGAP")
else:
assert 0

[report]
if tags("EQGAP"):

rint("Found %d mutations exposing a formal equivalence gap!" % tags("EQGAP"))
f tags("COVERED")+tags("UNCOVERED") :
print(“Coverage: %.2f%%" % (100.0%tags("COVERED")/(tags("COVERED")+tags(“UNCOVERED"))))

[test test_sim]
expect PASS FAIL
run bash $PRIDIR/test_sim.sh

[test test_eq]
expect PASS FAIL
run bash $PRIDIR/test_eq.sh

[test test_fm]
expect PASS FAIL
run bash $PRIDIR/test_fm.sh

wire mode32 = din_func([0];
wire revmode = !din_func[1];
wire czmode = !din_func[2];

integer i;
reg [63:0] tmp;
reg [7:0] cnt;

always @k begin

for (i =0; i < 64; i = i+1)

tmp[i] = (i < 32 && mode32) ? din_datal(63-i) % 32] : di
if (!revmode)

tmp = din_data;
if (mode32)

tmp = tmp[31:0];
if (czmode)

tmp = (tmp-1) & ~tmp;
© mecy status d P R

Database contains 2000 cached results.

Database contains 938 cached "FAIL" results for "test_eq".
Database contains 62 cached "PASS" results for "test_eq".
Database contains 898 cached "FAIL" results for "test_sim". end
Database contains 182 cached "PASS" results for "test_sim".
Tagged 898 mutations as "COVERED".

Tagged 62 mutations as "NOCHANGE".

cnt =
for (i =0; i < 64; i = i+l1)
cnt = cnt + (tmpli] && (i < 32 || !mode32));

assign dout_data = cnt;
endmodule

UNCOVERED

> Mutation 301
> Mutation 310
> Mutation 330
> Mutation 365
> Mutation 367
> Mutation 431

v Mutation 473

bitcnt.v:51
> Mutation 512
> Mutation 522
> Mutation 525
> Mutation 531
> Mutation 562
> Mutation 570
> Mutation 586
> Mutation 604
> Mutation 666
> Mutation 688

H 4

4 2] X

Property
Description:

In module bitcnt, cell $verific$mux_139$bitcnt.v...
If bit 49 of port Y is 1, invert bit 47.

Mutation 473
mode
module
cell
port
portbit
ctrlbit
src

test_sim

| Value |

cnotl

bitent
$verific$mux_139$biten...
¥

49

a7

bitcnt.v:51

UNCOVERED

PASS

Tagged 40 mutations as "UNCOVERED".

Coverage: 95.74%

‘ YosysHO

MCY for fault tolerance testing

e MCY test specification is generic - the same infrastructure for testbench tests
and formal equivalence check

e The pass/fail logic is also customizable

e Mutations are always single-bit changes

= Can apply the same tool to introduce mutations into fault-tolerant netlists
and check that the output does not change after mutation

Demo: https://qgithub.com/nakengelhardt/faultinjection mcy

https://github.com/nakengelhardt/faultinjection_mcy

. YosysHO

EQY — Equivalence Checking with Yosys

e |Initial Release this Month: Our brand new Equivalence Checking Tool \o/

e Identifies matching points in two designs
o Then partitions the design into smaller pieces that can be checked independently
o Scales much better than using SBY on a miter circuit
o Much easier to identify parts of design that cause scaling issues

e Application Domains
o Ensure post-synthesis netlist is the same as input design
o Check that a non-functional change does not change the behavior of the design

e Example/Tutorial Projects included with the tool

o Verification of a design change in ALU/shifter architecture in NERV RISC-V Processor
o Verification of Xilinx Vivado synthesis output for PicoRV32 processor design

' YosysHO

EQY — Equivalence Checking with Yosys

// new shifter code
function [31:0] bitreverse(input [31:0] arg);

for (integer 1 = 0; 1 < 32; i++) bitreverse[i] =
endfunction
wire [32:0] shift_t1
wire [31:0] shift_t2

arg[31-i];

{insn_funct7[5] && rsi_value[31], insn_funct3 == 3'b001 ? bitreverse(rsl_value) rsi_value};
$signed(shift_t1) >>> (insn_opcode == OPCODE_OP_IMM ? insn[24:20] : rs2_value[4:0]);

wire [31:0] shift_out = insn_funct3 == 3'b001 ? bitreverse(shift_t2) : shift_t2;
[gold] EQY 19:32:12 [nerv_change_pass] Successfully proved equivalence of partition nerv.imm_j
;ﬁ:g—fig;lggr;glnerv'sv EQY 19:32:12 [nerv_change_pass] Successfully proved equivalence of partition nerv.imm_i_sext
memory_map EQY 19:32:12 [nerv_change_pass] Successfully proved equivalence of partition nerv.imm_i
EQY 19:32:12 [nerv_change_pass] Successfully proved equivalence of partition nerv.imm_b_sext

[oate] EQY 19:32:12 [nerv_change_pass] Successfully proved equivalence of partition nerv.imm_b
read vertiog =sv nerv. uhange.sv EQY 19:32:12 [nerv_change_pass] Successfully proved equivalence of partition nerv.imem_addr_q
ﬁgﬁgr;tggpnerv EQY 19:32:12 [nerv_change_pass] Successfully proved equivalence of partition nerv.imem_addr

- EQY 19:32:12 [nerv_change_pass] Successfully proved equivalence of partition nerv.illinsn
[collect *] EQY 19:32:12 [nerv_change_pass] Successfully proved equivalence of partition nerv.dmem_wstrb
group regfilex EQY 19:32:12 [nerv_change_pass] Successfully proved equivalence of partition nerv.dmem_wdata
iy EQY 19:32:12 [nerv_change_pass] Successfully proved equivalence of partition nerv.dmem_valid
Joth Snsn EQY 19:32:12 [nerv_change_pass] Successfully proved equivalence of partition nerv.dmem_addr
[strategy sby] EQY 19:32:12 [nerv_change_pass] “ucc fully proved designs equi ant
use sby EQY 19:32:12 [nerv_change_pass] summary: Elapsed clock time [H:MM:SS (secs)]: 0:00:33 (33)
depth 2 , EQY 19:32:12 [nerv_change_pass] summary: Elapsed process time [H:MM:SS (secs)]: 0:00:40 (40)
EDGUOE: SHENINE WLTHELE EQY 19:32:12 [nerv_change_pass] DONE (PASS, rc=0)

‘ YosysHO

SCY — Sequence of Covers with Yosys

e Sneak peek at our next development:

A formal methodology and tool for generating long cover traces for large
designs, based on “checkpoint” cover properties, that the tool eagerly

solves one-by-one, using the final state of one property as the initial state
of the next.

e Example Applications:

o Creating formal cover traces for complex bus interactions on large SoC designs.

o Using formal tools to create a assembler programs to put a processor in difficult to reach
states of its state-space

‘ YosysHO

Data-Flow Properties

e With SCY we will also introduce a methodology for formal data-flow properties, for
example:

o Cover a trace that shows top.Bus.ComponentA.DOUT VALIDand
top.Bus.ComponentA.DOUT_READYactive in cycle t,,

o and top.Bus.ComponentB.DIN VALIDand
top.Bus.ComponentB.DIN_READYactive in cycle t,,

o and top.Bus.ComponentB.DIN_DATAatt, is a function of
top.Bus.ComponentA.DOUT_ DATAatt,.

e \Where “is a function of” means we can show data-flow (of a configurable kind) from
the input to the output.

e This functionality is especially useful for the kind of properties we are building SCY
for, but will be made available in all our formal flows.

' YosysHO

nextpnr

"‘ YosysHO
nextpnr — Open Source P&R

_Api .
e API-driven cross-platform P&R YT . B g

tool
o Each FPGA family can choose
different internal data structures as
suits the project

Items
X9¥11.5p12_h_r_1.>.X9Y...

> Y13

¥ Nets
clki
SautoSalumacc.cc:474:replace_al...
counter[8]
counter([7]
SautoSalumacc.cc:474:replace_al...
$autoSalumacc.cc:474:replace_al...
counter[5]
SautoSalumacc.cc:474:replace_al...

e Currently supported

Architectures: e
o Lattice iCE40, ECP5, Nexus pinie i
o Gowin LittleBee Mo onox
o Experimental: Cyclone V, i Yok
MachX0O2 ; “a::rt :“"tef[“l

Budget 0.00

. H Console Cell S$autoSalumacc.cc...
. httDS'//q Ith u b .COm/YOSVSHQ/ INTOT VISILEU /3510 PIPS (U.UL% TEVISLLS, U.UZ% OVErLLme TeviSIlS). z v

Info: final tns with respect to arc budgets: 0.000000 ns (0 nets, 0 A

t arcs) Port 12
neX Qnr Info: Checksum: 0xa4786aa9 Budget 82793.00

Routing design successful. cell $autoSalumacc.cc...

Port 10
Budget 82793.00

] 0%

https://github.com/YosysHQ/nextpnr
https://github.com/YosysHQ/nextpnr

' YosysHO

Get the Tools

‘ YosysHO
Try it out!

e Download nightly builds of the OSS CAD Suite

o https://qithub.com/YosysHQ/oss-cad-suite-build/releases/latest
o Includes Yosys, SBY, MCY, all dependencies, supported solvers, GHDL plugin (linux only)
o Also nextpnr, Amaranth, cocotb, ...

e Documentation: https://vosyshqg.readthedocs.io/en/latest/

e Ask me for an evaluation license to the commercial Tabby CAD Suite
o Email contact@yosyshg.com or tick a box on https://www.yosyshg.com/contact

e Or try our "formal taster" package
o 2 hours of tailored video support to help you get started
o Save 33% - just 1800 Euros for 3 months.

https://github.com/YosysHQ/oss-cad-suite-build/releases/latest
https://yosyshq.readthedocs.io/en/latest/
mailto:contact@yosyshq.com
https://www.yosyshq.com/contact

' YosysHO

Q&A

