Universidade Federal do Rio Grande do Sul, Brazil Graduate Program in Microelectronics www.ufrgs.br/pgmicro

Enhancements on Fault Injection for Xilinx 7 Series and UltraScale+ SRAM-Based FPGAs

Fabio Benevenuti, Fernanda Lima Kastensmidt

5th SEFUW SpacE FPGA Users Workshop March 2023, ESTEC, Noordwijk, The Netherlands

Content

- Reliability and fault injection
- Investigation on Xilinx 7 Series & UltraScale+
- Improvements on UFRGS fault injector

Motivation

- Physical fault injection
 - Real hardware
 - Radioactive sources, particle accelerators, laser
 - Costly facilities, controlled environment
- Emulation-based fault injection
 - Real hardware, but exploiting test & configuration circuitry to manipulate device and emulate radiation effects

□ JTAG, SelectMAP, PCAP, ICAP, ...

- Lower cost, no complex facilities
- May be focused on modules of interest
- Application running near or at nominal speed in real hardware
- Simulation-based fault injection
 - Hardware or circuit models used to simulate faults
 - Detailed observations
 - Available on early stages of engineering, even before real hardware existence
 - Possibly the lower cost (mostly software), but also the slower

3

Fault Injector

Improvements

Motivation

Motivation

- Physical fault injection
 - Real hardware
 - Radioactive sources, particle accelerators, laser
 - Costly facilities, controlled environment
- Emulation-based fault injection
 - Real hardware, but exploiting test & configuration circuitry to manipulate device and emulate radiation effects

□ JTAG, SelectMAP, PCAP, ICAP, ...

- Lower cost, no complex facilities
- May be focused on modules of interest
- Application running near or at nominal speed in real hardware
- Simulation-based fault injection
 - Hardware or circuit models used to simulate faults
 - Detailed observations
 - Available on early stages of engineering, even before real hardware existence
 - Possibly the lower cost (mostly software), but also the slower

Reliability & Fault Injection

|--|

Fault space

UFRGS PGMICRO

Block RAM

- Fault location: where
 - User/Application data: BRAM, flip-flips, LUTRAM/shift-registers,...
 - Configuration memory: LUT equation, DSP opmode, INT/PIP switchbox routing,...

- Fault type: emulated effect
 - Single bit-flip (SBU-SEU), multiple bit-flips (MBU-SEU)
- Fault time: when
 - Important for dynamic data (BRAM, flip-flop), subject to temporal masking
 - Also important for CRAM when memory scrubbing is active
 - Less important for persistent data (CRAM) without scrubbing

 (\mathbf{X})

Qualification metrics

- Essential and critical bits
 - Captures only a static behavior of the design
 - There special conditions where non-essential bit may become a critical bit

(Xilinx, 2012)

Qualification metrics

- AVF, architectural vulnerability factor
 - May require extensive scan of the whole processing cycle to describe AVF in terms of sensitive surface over residency time
- Mean metrics, single-point statistics
 - Cross-section, Mean time between failure (MTBF): not good for comparison in the presence of mitigations/redundancy (TMR)
 - Mean execution between failure (MEBF), Mean workload between failure (MWBF): not good for comparison when design bellow 100% duty cycle
- Reliability curves, mission time
 - Captures the dynamic and cumulative effect over time
 - Allows for focusing on the high-reliability zone (experiment truncation/censoring)
 - Allows for extraction of mean metrics
 - Allows cross-validation between radiation and emulated fault injection

Reliability curves

- Accumulate faults (or fluence) until failure (or until limit of interest)
 - Collect a number N of events, recording time t, fluence Φ or number of accumulated faults for each event

Fault injectors for Xilinx FPGAs

Not an exhaustive list

	Fault Injector	Data manipulation	Target device	Access interface
Cumulative, R curve	Antoni et al. (2000)	Modifies bitstream file before loading in FPGA.	Xilinx Virtex	JTAG/ MultiLINX
	Johnson et al. (2003)	Bitstream may be 1 single frame.	Xilinx Virtex	JTAG/ MultiLINX
	Aldeghiri et al. (2007) FLIPPER		Xilinx Virtex-II	SelectMAP/ JTAG
	Napoles et al. (2007) FT-UNSHADES		Xilinx Virtex-II	SelectMAP
	Mogollon et al. (2011) FT-UNSHADES2	Uses one device/FPGA to manipulate bitstream	Xilinx Virtex-5	SelectMAP
	Aldeghiri et al. (2014) FLIPPER2	inside the target FPGA.	Xilinx Virtex-4	SelectMAP/ JTAG
	Hardward et al. (2015) BYU XRTC-V5FI		Xilinx Virtex-5	SelectMAP
	Thurlow et al. (2019) BYU TURTLE		Xilinx 7 Series	JTAG

Fault injectors for Xilinx FPGAs

Not an exhaustive list

	Fault Injector	Data manipulation	Target device	Access interface
Sampling for	Sterpone et al. (2007)	Instrumented design, modifies bitstream from within	Xilinx Virtex-II	ICAP
	Nazar et al. (2012) UFRGS	FPGA.	Xilinx Virtex-5	ICAP
	Tarrillo et al. (2015) UFRGS	Replays SEUs database collected from radiation experiment.	Xilinx Virtex-5	ICAP
	Leipnitz et al. (2016) UFRGS	High speed fault injetion controller through PCI- Express interface.	Xilinx Virtex-5	ICAP
MBU	Nunes et al. (2015) FIRED	Instrumented design, modifies bitstream from within FPGA.	Xilinx Virtex-5	ICAP
Complete list	Villalta et al. (2014)	Modifies bitstream from Arm Cortex-A software using processador access port.	Xilinx Zynq- 7000	PCAP
	Tonfat et al. (2016) UFRGS	Exhaustive scan for critical bits.	Xilinx Artix-7	ICAP
	Gomes-Cornejo et al. (2017)	Modifies BRAM content from Arm Cortex-A software using processador access port.	Xilinx Zynq- 7000	PCAP
Cumulative,	Bozzoli et al. (2018) PyXEL	Produces bitstream file variants emulating SEU effect.	Xilinx 7 Series	SelectMAP/ JTAG
R curve	This work UFRGS	Cumulative fault injection, SBU+MBU, coexistence with scrubbing.	Xilinx 7 Series & UltraScale+	ICAP

Understanding Xilinx 7 Series & UltraScale+

Fabio B.	Motivation	Reliability & Fault Injection	Xilinx 7 Series & UltraScale+	Fault Injector Improvements	
----------	------------	----------------------------------	----------------------------------	--------------------------------	--

Investigation on Xilinx FPGAs

Investigation on Xilinx FPGAs

Investigation on Xilinx FPGAs

Floorplan reachable by fault injector

Example Zynq-7000 XC7Z030

Floorplan reachable by fault injector

Two ROIs, less then 0.02 mm²

9.1 mm

- Laser energies 300pJ and 220 pJ
- Laser shot each ~4 s, readback each ~16 s
- Step ~1 μm horizontal, 5 μm vertical

- Each color a different readback file
 - Run 1
 - Run 2
- Time/position of artifacts

Die *x* dimension (column/framewise)

- Each color a different readback file
 - Run 1
 Run 2

Time/position of artifacts

Time/position of artifacts

7 Series static tests

CRAM 1-1-1 CRAM 2-2-2 BRAM 1-1-1 BRAM 2-1-2 CRAM 2-1-2

7 Series static tests

Type of	Type of	Examples	a Particles	Particles Heavy ions		Neutrons	
memory	SEU		u i articics	ricary folio	14 MeV 0°	14 MeV 180°	(Epi)Thermal
BRAM	SBU 1-1-1	×	100.0%	82.0%	93.4%	97.1%	95.4%
	MBU 2-1-2	XX		16.2%	4.7%	2.9%	_
	MBU 1-2-2	×		_	_	_	4.5%
	Others		_	1.8%	1.9%	_	0.1%
CRAM	SBU 1-1-1		97.6%	38.1%	76.7%	79.9%	78.1%
	MBU 2-2-2	*	2.4%	41.9%	16.9%	15.5%	0.0%
	MBU 2-1-2	X	0.0%	4.4%	3.5%	2.1%	0.0%
	MBU 1-2-2	XX	_		0.3%	1.5%	17.8%
	MBU 2-2-3	¥		3.0%	1.3%	0.5%	0.0%
	MBU 2-2-4	8		0.2%	_	0.5%	_
	MBU 2-3-4	**	—	8.3%	0.6%	_	0.0%
	MBU 2-3-5	× × ×		0.6%	0.3%		0.0%
	Others		_	3.4%	0.3%	_	4.1%

7 Series static tests

Type of	Type of	Examples	<i>α</i> Particles	Heavy ions		Neutrons	
memory	SEU		u rancies	Theavy Ton's	14 MeV 0°	14 MeV 180°	(Epi)Thermal
BRAM	SBU 1-1-1	*	100.0%	82.0%	93.4%	97.1%	95.4%
	MBU 2-1-2	XX	_	16.2%	4.7%	2.9%	_
	MBU 1-2-2	×		_	_	_	4.5%
	Others			1.8%	1.9%	_	0.1%
CRAM	SBU 1-1-1	×	97.6%	38.1%	76.7%	79.9%	78.1%
	MBU 2-2-2	*	2.4%	41.9%	16.9%	15.5%	0.0%
	MBU 2-1-2	*	0.0%	4.4%	3.5%	2.1%	0.0%
	MBU 1-2-2	×			0.3%	1.5%	17.8%
	MBU 2-2-3	*	_	3.0%	1.3%	0.5%	0.0%
	MBU 2-2-4		_	0.2%	_	0.5%	_
	MBU 2-3-4	***		8.3%	0.6%		<u>0.0%</u>
	MBU 2-3-5	***		0.6%	Cr	hallenge to scrubber	0%
	Others		_	3.4%	0.3%	_	4.1%

UltraScale+ (16 nm FinFET)

- Main changes in floorplan
 - Same number of LUTs and flip-flops in a CLB, but now all in one slice instead of two
 - Floorplan simplification
 - Switch box columns are now independent from CLB/DSP/BRAM logic
 - There is no more the concept of TOP and BOTTOM rows
 - New layout of BRAM bits (sliced in 256 frames instead of 128)
- Since UltraScale (20 nm planar)
 - More interleaving on CRAM: aggressive reduction of intraframe MBU
 Positive impact of scrubbing

UltraScale+ (16 nm FinFET)

UltraScale+ (16 nm FinFET) ERGS PGMICRO UltraScale+ CLB CLB Switch box

Enhancements on UFRGS Fault Injector

Fabio B. Motivation	Reliability & Fault	Xilinx 7 Series &	Fault Injector
	Injection	UltraScale+	Improvements

- Emulate cumulative effect of SEUs
 - Build a reliability curve (CDF) similar to obtained from radiation
- Accelerate fault injection campaign

- Emulate cumulative effect of SEUs
 - Build a reliability curve (CDF) similar to obtained from radiation
- Accelerate fault injection campaign

Test results for two implementations of *study-case CNN* for aerial image classification (RADECS 2021)

33

Mitigations

MB

MIPS

- An estimate on the number of critical bits can still be obtained with randomaccumulated methodology
 - R(t=1) ~ Nazar et al. (2012) random sampling

Works for

7 Series UltraScal

Fabio B.

Where

BRAM

CRAM

FF

When

ASYNC

Mode

RAR

CCUM

What

MBU

SBU

N MLP CNN

Study-cases

ARM M0

MB

мхм

Test results for different blocks of a study-case MLP (SBCCI 2018)

Works for

7 Series UltraScale

Where

BRAM

FF

CRAM

Mode

RAR

ACCUM

When

ASYNC

What

MBU

NN MLP CNN

SBU

Study-cases

мхм

ARM M0

MB

MIPS

SCRUB

Mitigations

HAMM

Asynchronous Fault Injection

- UFRGS PGMICRO
- Inject faults in designs when Xilinx native scrubber (FRAME_ECC) is active
- Fault may be injected <u>during</u> DUT processing cycle
 - And scrubbed at any point in time of the processing cycle

Asynchronous Fault Injection

PGMICRO

Test results for two implementations of *study-case CNN* for traffic sign classification (RADECS 2019, JICS 2021)

Mission time for $R(f) \ge 90\%$ from fault injection

Mission time for $R(\Phi) \ge 90\%$ from heavy ions

ARM M0

MB

MIPS

Implementations using Xilinx scrubber

Mode

RAR

CCUM

When

ASYNC

SBU

Fabio B. 7 Series

100

90

80

70

60

50 40

30 20

10 0

Float

Q16

Works for

UltraScale

Q10

Accumulated faults injected

Where

CRAM

Design variant

What Study-cases CNN мхм HLS MBU NN MLP

37

Asynchronous Fault Injection

Test results for experimental design implementing a softcore microprocessor with different levels of fault mitigation (TNS 2019)

Mode

RAR

ASYNC

SBU

MBU

CCUM

BRAM

CRAM

FF

Fabio B.

7 Series

UltraScale

Dynamic cross section from heavy ions

Error rate from fault injection

failure $au_{\it failure}$ – faults iniected

ARM M0

MB

MIPS

SCRUB

CNN

NN MLP

мхм

HLS

- All bit-flips must be seen as a single SEU
 - Instrument clock-gate for design under test
- Scrubber should not correct partially injected SEU
 - Suspend scrubber during MBU injection (FPGA control registers)
- A table of most frequent MBU geometries was embedded into the fault injection module
 - Single command, faster communication
- It is up to the fault injection campaign scripting to decide the ratio of SBU and MBU, and its geometry, to emulate the targeted radiation environment

- Test results for experimental design of *matrix multiplication generated by high-level synthesis (HLS)*

$$R_{Weibull,\alpha,\beta}(t) = e^{-\left(\frac{t}{\alpha}\right)^{\beta}} \qquad MT_{\{R(t) \ge r\}} = \alpha \left(-\ln r\right)^{\frac{1}{\beta}}$$

What

MBU

NN MLP

CNN

SBU

Study-cases

ARM M0

MB

MIPS

мхм

Works for

UltraScale

7 Series

Where

BRAM

FF

CRAM

Mode

RAR

ACCUM

When

ASYNC

Mitigations

SIHFT

намм

SCRUB

Test results for experimental design of *matrix multiplication generated by high-level synthesis (HLS)*

$$R_{Weibull,\alpha,\beta}(t) = e^{-\left(\frac{t}{\alpha}\right)^{\beta}} \qquad MT_{\{R(t) \ge r\}} = \alpha \left(-\ln r\right)^{\frac{1}{\beta}}$$

What

MBU

NN MLP

CNN

SBU

Study-cases

ARM M0

MB

MIPS

SCRUB

мхм

When

ASYNC

Mode

RAR

ACCUM

Works for

UltraScale

7 Series

Where

BRAM

FF

CRAM

 Test results for experimental design implementing a softcore microprocessor with different levels of fault mitigation (TNS 2019)

Where

BRAM

FF

CRAM

When

ASYNC

Mode

RAR

ACCUM

What

MBU

NN MLP

CNN

SBU

Study-cases

HLS

ARM M0

MB

MIPS

SCRUB

мхм

Heavy ions ¹⁶O

Fault injection with single bit-flips 100% 80% 60% Reliability 40% 20% 0% 1 10 100 1000 Accumulated faults injected (F/kf) Unmit, No Scrub. ----- Unmit. Scrub. CGTMR No Scrub. CGTMR Scrub. FGDTMR No Scrub. ----- FGDTMR Scrub.

Works for

Mitigations

- PGMICRO
- Test results for experimental design implementing a *softcore microprocessor* with different levels of fault mitigation (TNS 2019)

Heavy ions ¹⁶O

Works for

Where

BRAM

FF

CRAM

Mode

RAR

ACCUM

When

ASYNC

What

MBU

NN MLP

CNN

SBU

Study-cases

HLS

ARM M0

MB

MIPS

SCRUB

мхм

Mitigations

1000

 Test results for experimental design implementing a *softcore microprocessor* with different levels of fault mitigation (TNS 2019)

Ratio between radiation and fault injection with and without MBU

Fabio B.

Fault injection on flip-flops

 Reuse the mechanisms for capture, readback, partial reconfiguration mask and reset after reconfiguration (RAR)

PGMICRO

- 7 Series only, RAR is different for UltraScale+
- Can be used concomitantly with the CRAM fault injection

Fault injection on flip-flops

- UFRGS PGMICRO
- Test results for experimental design of *softcore* MicroBlaze and miniMIPS microprocessors onboard NanoSatC-BR2 cubesat payload (RAW 2019)
 - Software hardened by SIHFT techniques
 - Faults injected selectively on CLB flip-flops only

Port of fault injector to UltraScale+

47

Main changes

- Different number of bits inside a frame
- Switch box columns addressed independently
- New semantics for some FPGA registers
- Minor changes on ICAP hardware block interface
 - □ Better coordination among multiple ICAP instances

Port of fault injector to UltraScale+

When

ASYNC

What

MBU

NN MLP

CNN

SBU

Study-cases

HLS ARM M0

MB

MIPS

мхм

Mode

RAR

ACCUM

Test results for experimental design of *matrix multiplication generated by high-level synthesis (HLS)*

Matrix Multiplication Benchmark Application						
7 Series	Zynq-7000 SoC (Z030)	Ultrascale	+ Zynq MPSoC (ZU3EG)			
Clock: 100 MHz	2	Clock: 100 MHz				
WNS (FGDIMR): 0.7 ns	WNS (FGDIMR): 3.1 ns			
Unhardened:		Unhardened:				
LUT	487	LUT	430			
FF	564	FF	564			
CARRY4	59	CARRY8	28			
BRAM	3	BRAM	3			
DSP	7	DSP	7			
CGTMR:		CGTMR:				
LUT	1691	LUT	1536			
FF	1692	FF	1692			
CARRY4	177	CARRY8	75			
BRAM	9	BRAM	9			
DSP	21	DSP	21			
FGDTMR:		FGDTMR:				
LUT	8383	LUT	8381			
FF	3276	FF	3276			
CARRY4	132	CARRY8	66			
BRAM	9	BRAM	9			
DSP	18	DSP	18			
Fl pblock 1166 frames x 101 words = 3768512 bits		FI pblock 1	330 frames x 93 words = 3958080 bits			

Fabio B.

Where

BRAM

FF

CRAM

Port of fault injector to UltraScale+

Test results for experimental design of *matrix multiplication generated by high-*level synthesis (HLS)

UltraScale+

49

Final discussion

- Legacy features of UFRGS fault injector ported successfully to UltraScale+
- Tighter integration of fault injector with clock gating and FPGA control registers allowed coexistence of scrubbing and MBU emulation
- Fault injector support to MBU improved fidelity to radiation
 - MBU breaks scrubbing
 - MBU breaks fine-grained distributed TMR
 - Without MBU, the fault injector is exceedingly optimistic
- Fault injector operates with a general interface
 - It is up to the campaign planning and scripting to emulate the MBU profile of the targeted environment

Future work

- Open to new experiments:
 - UltraScale+ new reset-after-reconfiguration (RAR, PR) policies
 - UltraScale+ softcore only scrubber (SEM IP)
- Port fault injector to Xilinx Versal ACAP
 - Keep up with new product family and technology (FinFET 7 nm)

Thank you for your attention!

Contact details

Name: Fernanda Lima Kastensmidt Head of Fault Tolerance & Reliability Team

Affiliation: Universidade Federal do Rio Grande do Sul (UFRGS)

- Email: fglima@inf.ufrgs.br
- Link: www.inf.ufrgs.br/~fglima