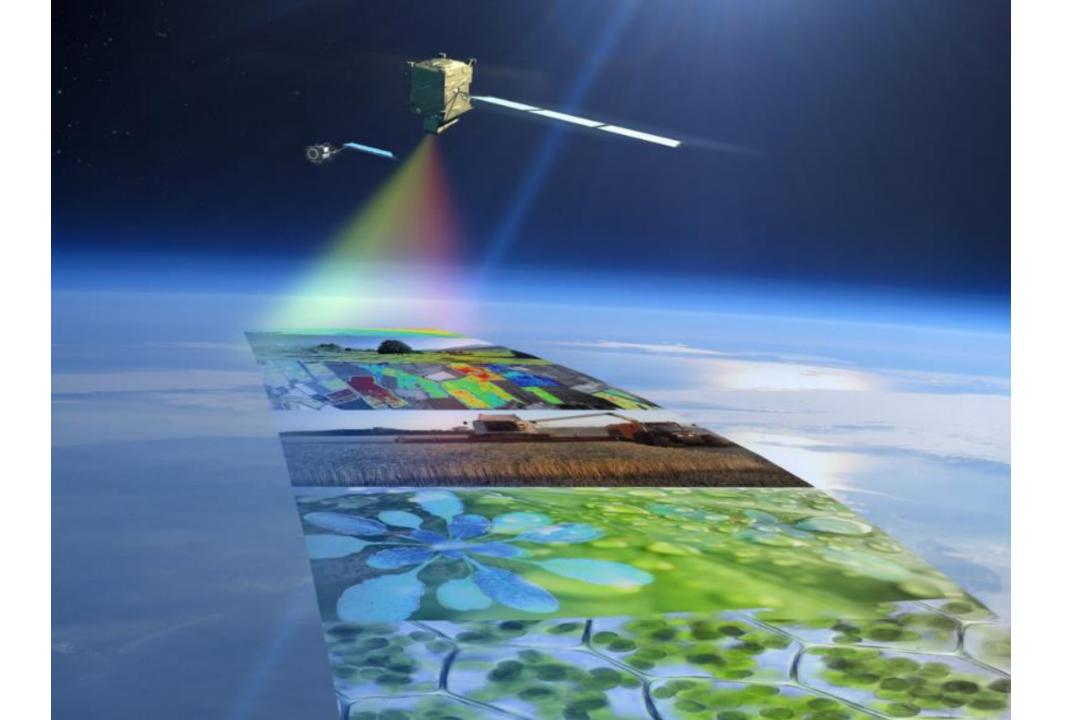
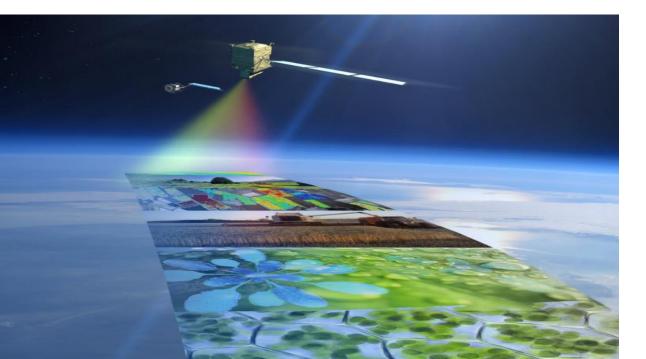
In-Orbit Artificial Intelligence and Machine Learning for Space Applications : Versal Space Reference Design -First Design-In Experiences

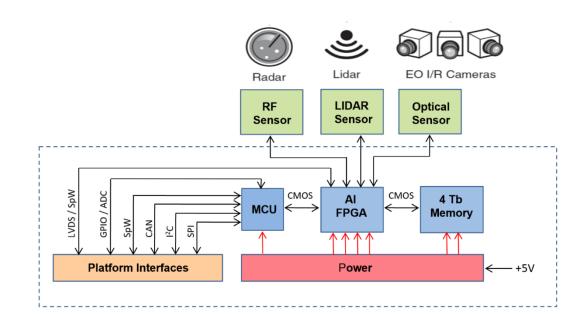
16th March 2023

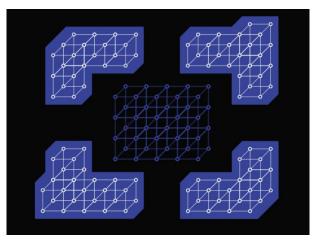
Dr. Rajan Bedi CEO Spacechips rajan@spacechipsllc.com


The Global Space-Electronics Company

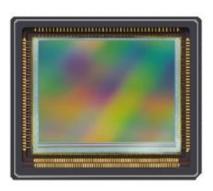
Winner of European Start-Up of 2017 and European High-Reliability Product of 2016, 17 & 18

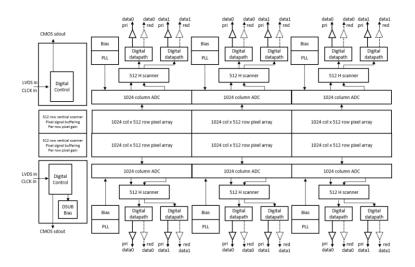






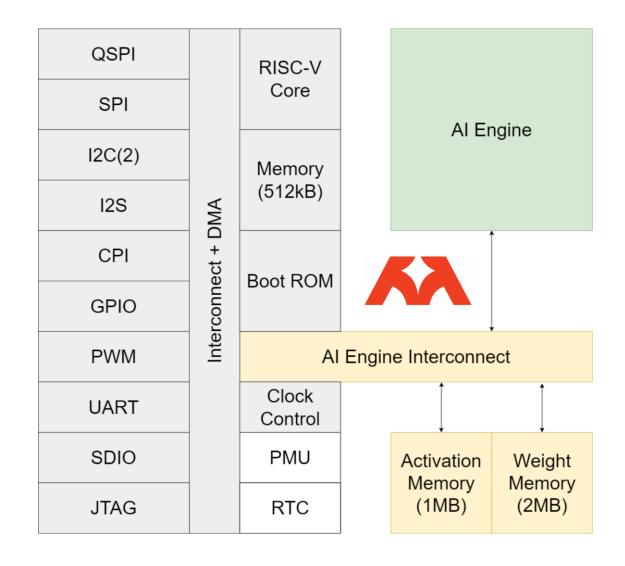
	DDR3 16Gb x 16	NAND 256Gb x 16
Number of Devices	64	4
Minimum Real Estate (mm ³)	152,320	16,796
Power Dissipation (static/dynamic)	17W / 17W	13.2mW / 5.2W
Approximate Cost (\$)	650k	30k
Storage Rate, 16-bit bus (Mbytes/s)	2,667	100
Total Byte Writes (TBW)	Unlimited	7530 TB

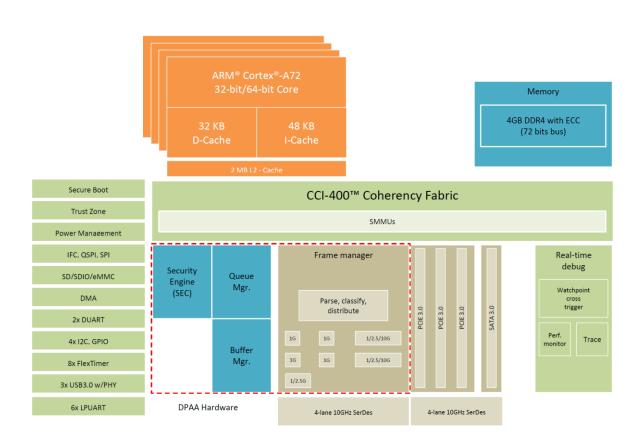




Sensors & Sensor Fusion

- CMOS image sensors provide leading-edge, low-power performance in a small form factor outputting data on 28 sub-LVDS pairs with each capable of operating up to 960 Mbps.
- CCD image sensors output data using 1.6 Gbps, CML high-speed serial links and 1V8 LVCMOS SPI for control.
- LVDS SpaceWire, SpaceFibre, RS-232 and RS-422 are other interfaces typically used by LIDAR sensors.




Space-Grade AI Accelerators : Tesla

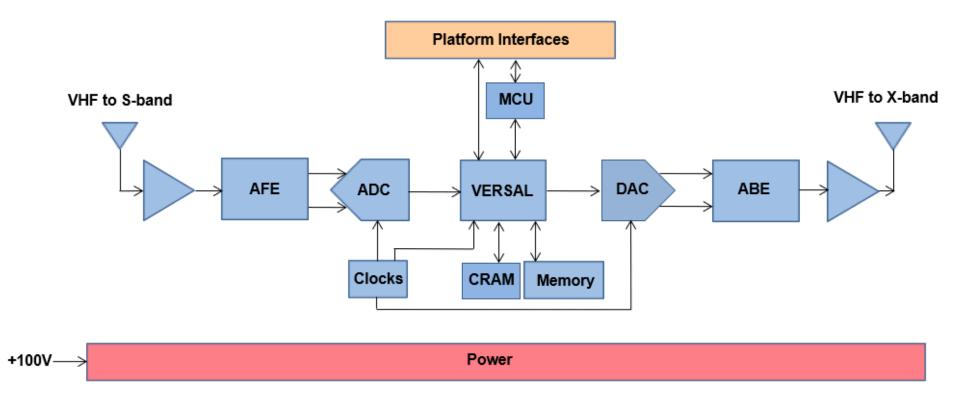
- Magics Technologies' Tesla comprises a RISC-V microcontroller and an AI inference co-processor offering 64 MAC units operating up to 6.4 GOPS when clocked at 100 MHz.
- Tesla contains dedicated AI engines optimising the execution of linear algebra, convolution and neuralnetwork functions to support machine learning.
- Tesla AI Accelerator offers 32 LVCMOS I/O and contains 3 MB of memory.
- Low-power device, 1V8 and 3V3 supply rails, 84pin QFN package
- Roadmap of new SG AI Accelerators

Space-Grade AI Accelerators : Qormino QLS1046

- Teledyne e2v : each Cortex-A72 core offers a performance of 4.72 DMIPS/MHz and with four cores running at 1.8 GHz, the resultant horsepower is 34,000 DMIPS or greater than 45,000 CoreMarks®.
- Each core contains a SIMD vector processing unit, NEON, processing at 56.6 GFLOPS at 1.8 GHz.
- The four MPUs execute the ARMv8-A architecture each with their own L1 32KB data and 48 KB instruction caches, as well as sharing a common 2 MB L2.
- LVCMOS I/O and 5 & 10 Gbps high-speed serial links
- Total power consumption ranges from 6.5 to 20 W dependant on clock frequency and I/O rate.

Space-Grade AI Accelerators : NG-Ultra

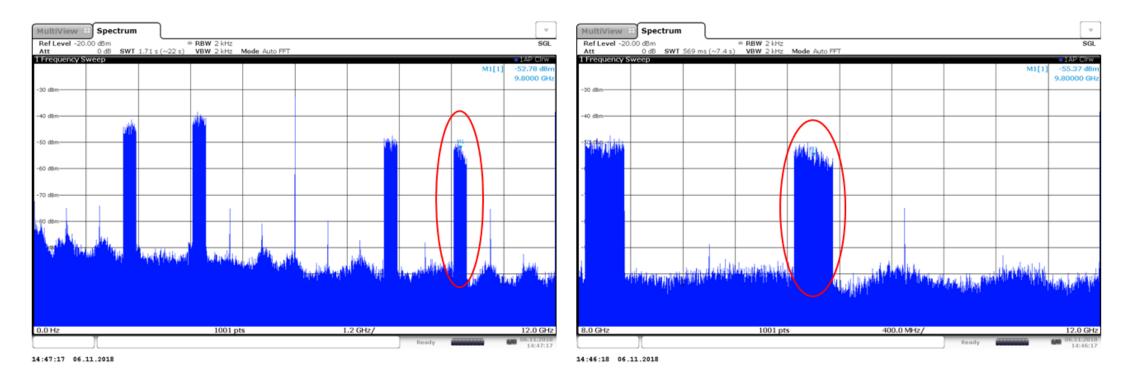
	oprocessor Sul	bsystem				
	D	ebug & Trace				
SoC Services	Pr	rocessing Unit	External Memo	Connectivity		
Multichannel DMA	4.014	4040	DDR2/3/4 w/ RS	DDR2/3/4 w/ RS SPI		
V&T Monitor	ARM [®] Cortex™-R5	ARM [®] 2 Cortex [™] -R52		SpaceWire		
			FLASH			
Clock & Reset	ECC NEON					
Error Manager	MPU FPU	MPU FPU	On-chip Memo	UART		
Boot SpaceWire	GIC	010	eRAM	GPIOs		
GIC GIC						
CoreLink [™] NIC-400 Network Interconnect						
FPGA	abric	High Speed Conne	ctivity	General Connectivity		
	DPRAMs					
CDc DC		(HSSL Com	olex I/O	GPIO		
• 19x24 Mult.	True Dual Port		1 4 9 4			
		12 Gbps 1.2V SpaceFibre SpW	to 1.8V PHY	• 1.8V to 3.3V		
19x24 Mult.Preadder	True Dual Port 48 Kb	12 Gbps 1.2V SpaceFibre SpW		• 1.8V to 3.3V		


- NanoXplore: each Cortex-R52 core offers a performance of 1,250 DMIPS/core running at 600 MHz.
- Each core contains a SIMD vector processing unit, NEON.

Versal Space Reference Design

- AMD/Xilinx's Versal ACAP represents a timely and synergistic OBP engine to enable in-orbit AI and ML.
- Spacechips is bringing-to-market an EM Versal Space Reference Design (XCVC1902-1MSEVSVA2197) later this year to allow you to prototype and de-risk in-orbit AI and ML.
- Populated with EM-grade versions of space-grade parts!
- The XCVC1902 is part of the AI Core Series (133 TOPs) and contains 400 AI engines, 1,968 DSP engines, 1,968,400 logic cells 899,840 LUTs and 1,968k logic cells.
- Spacechips is bringing-to-orbit a flight-qualified version next year which you can launch to implement AI and ML in-orbit.
- Populated with space-qualified components, delivered with EICD, an Instruction Manual and functional HDL to prove operation of the signal-chain blocks no application code!

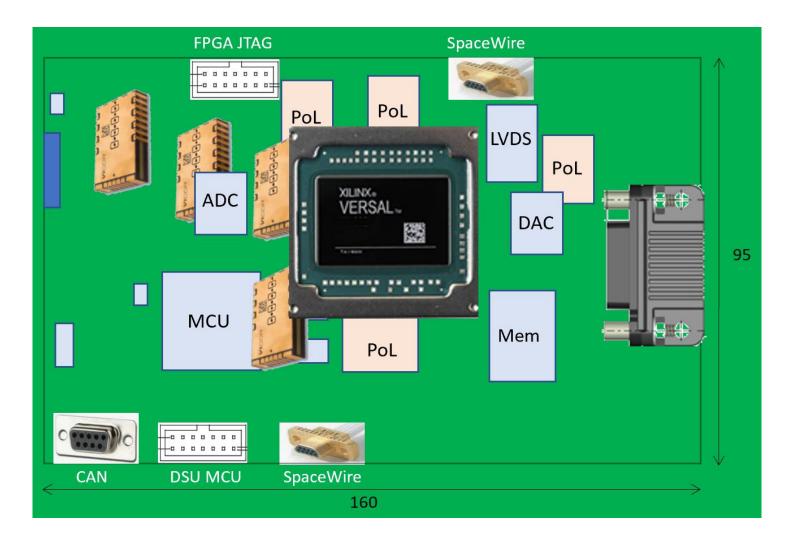
Versal Space Reference Design Architecture



Representative transponder that allows RF traffic to be input, digitised, processed and intelligent analytics extracted in real-time.

Data can be stored using the 1 Tb, non-volatile on-board memory (DDR3-speed) and exported to external sub-systems using a variety of space-industry interfaces such as SpaceWire, SpaceFibre, SPI, CAN and 44, 32.75 Gbps HSSLs.

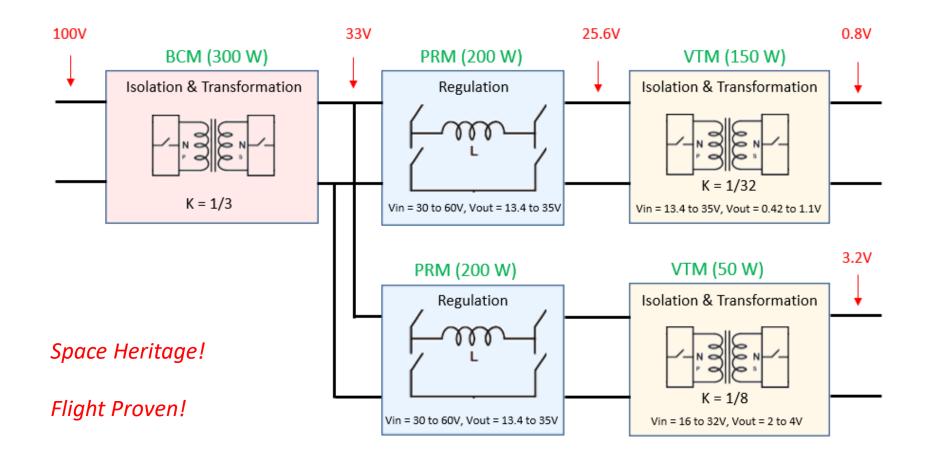
Blind and R/W Scrubbing options supported as well as access to SelectMAP port!

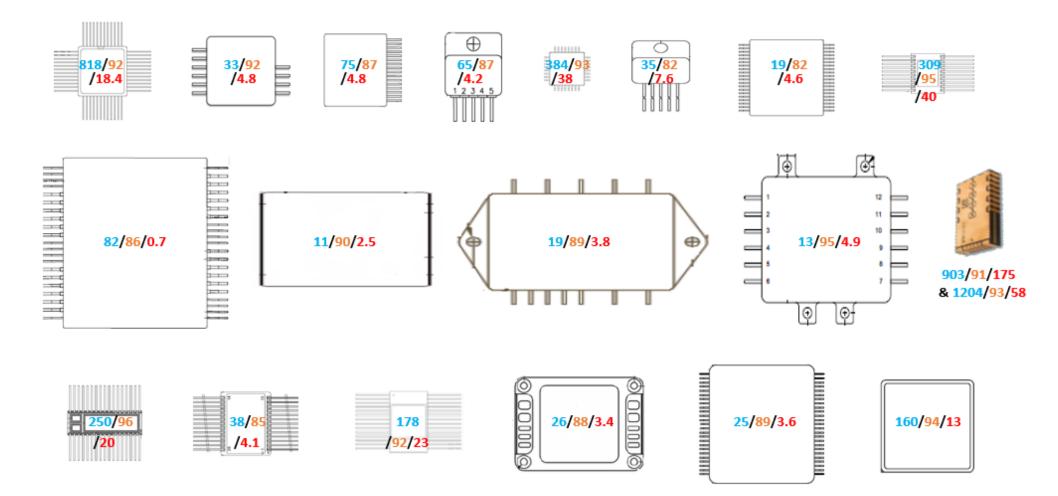

Direct RF Conversion

12-bit ADC, Fs = 1.5 GSPS, BW = 3 GHz to digitise up to S-band (Ku/K-band options can also be offered) 12-bit DAC, Fs = 8 GSPS, BW = 7.5 GHz (K-band options can also be offered)

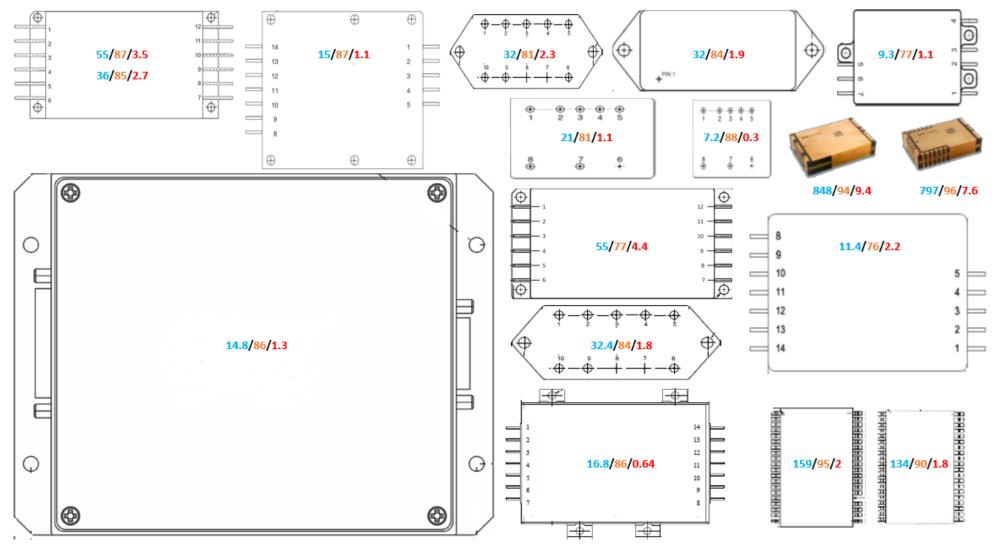
Default build offers fixed sampling rates, options available to allow sampling rate to be changed and reprogrammed in-orbit

Implementation 1 : XCVC1902-1MSEVSVA2197




XPE Versal Power Distribution

PE Quick Estimate - XCVC1902VSVA2197-1LI	×
XCVC1902VSVA2197-1LI	
Processing System	AI Engine
Quantity Clock (MHz) Load (%) Dual R5 0 500 100	Interface Cores Load (%) PL Stream 200 100
OCM 0	NoC Stream 200 100
TCM 0	
A72 0 500 100 Dual_GEM 200 100	NoC Bandwidth Data Path (MBps) PS->DDRC ▼
USB 200 200	PS->PL ▼
Programmable Logic % Clock (MHz) Toggle LUT 899840 100.0 300 12.5	IO/Transceiver Interfaces Input Output Inout Mb/s HDIO 0 0 0
FF 1799680 + 100.0 300 12.5	XPIO 0 0 0
BRAM 1934 100.0 300 12.5	Memory DDR3 Data 64 1866
URAM 463 • 100.0 300 12.5	Channels Line Rate (Gbps)
DSP 1968 100.0 300 12.5	GTY 32 25
	OK Cancel

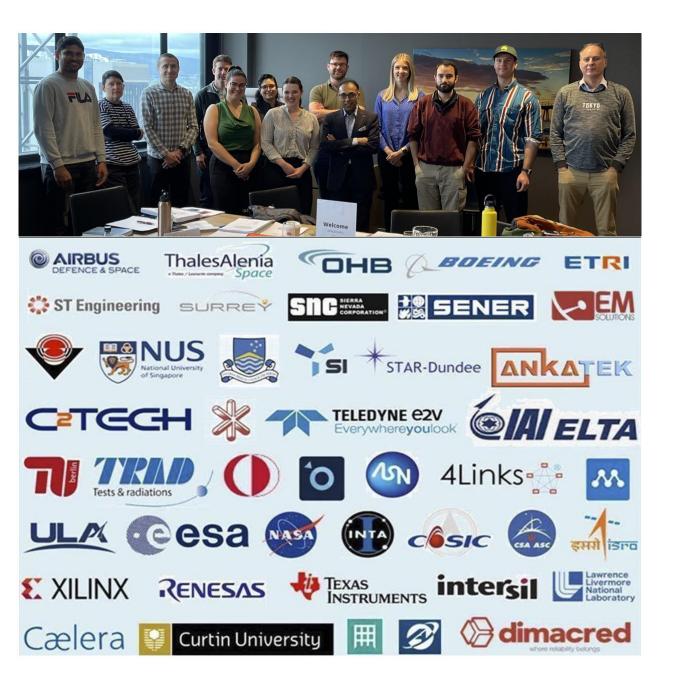

- When the XCVC1902-1MSEVSVA2197 is fully implemented, its 0.8 V core voltage will draw around 140 A with a total device dissipation of 130 W.
- 57% of the overall power is consumed by the AI engines
- 13% by logic
- 10% by the high-speed transceivers
- 10% by clocking and PLLs
- 5% by processors and the remainder by memory and interfaces

Factorised Power Architecture

Power Density [W/in³] / Efficiency [%] / Current Density [A/in²]

Power Density [W/in³] / Efficiency [%] / Current Density [A/in²]

Versal Power Distribution


Domain/ Sequence no.	Rail Name	Rails	Voltage	DC Spec.	AC Spec.	Current (A)	Power (W)	Step	Comment
LPD/1 PL/1 PMC/1 System/1	PS_IO (Digital)	VCCO_500/1/2/3, VCCO_HDIO, VCCO_XPIO	1.8V – 3.3V (HDIO/PSIO) 1.8V – 3.3V (VCCO_50X) 1V – 1.5V (XPIO)	±1%	±5% (XPIO) (HDIO/PSIO/XPIO)*	0.100 - 3	10	100%	*1.8V, 2.5V at ±5%, and 3.3V at +3/–5% VCCO supplies can be combined if using same Voltage VCCOs must be powered on first in relevant domain
System/2	0V80_SOC _IO (Digital)	VCC_SOC, VCC_IO	0.8V	±1%	±17m∨	3.5	3	33%	
PMC/2	0V80_PMC (Digital)	VCC_PMC	0.8V	±1%	±17mV	0.350	0.3	33%	0.88V for PS Overdrive
System/3	1V5_VCCAUX (Digital)	VCCAUX	1.5V	±1%	±2%	4.2	6.3	33%	
LPD/2	0V80_PSLP (Digital)	VCC_PSLP	0.8V	±1%	±17mV	0.300	.2	33%	0.88V for PS Overdrive
FPD/1	0V80_PSFP (Digital)	VCC_PSFP	0.8V	±1%	±17mV	1.5	1.2	70%	0.88V for PS Overdrive
PL/2	0V80_RAM (Digital)	VCCINT, VCC_RAM	0.8V	±1%	±17m∨	135	108	33%	200A/us Slew Rate
PMC/3	1V5 (Digital)	VCCAUX_SMON, VCCAUX_PMC	1.5V	±1%	±2%	0.350	.5	100%	
PL/3	0V88 (Analog)	GTAVCC	V88.0	±2%	10m∨pp	1.7	1.5	70%	Ripple is steady state, total tolerance is +/-3%. Ripple at FPGA pins, see <u>UG578</u>
PL/4	1V5 (Analog)	GTAVCCAUX	1.5V	±2%	10mVpp	0.100	.2	70%	Ripple is steady state, total tolerance is +/-3%. Ripple at FPGA pins, see <u>UG578</u>
PL/5	1V2 (Analog)	GTAVTT	1.2V	±2%	10m∨pp o	2.8	3.3	70%	Ripple is steady state, total tolerance is +/-3%. Ripple at FPGA pins, see <u>UG578</u>

Conclusion

- For high-definition SAR video, the raw computing performance of the QLS1046-4GB together with its fast, memory interface and small form-factor makes it suitable for extracting real-time insights from Earth-Observation imaging data. DDR4 rates up to 2.1 GHz avoid traditional I/O bottlenecks.
- For situational awareness, e.g., for identification of friend or foe, for space-debris collision avoidance or in-situ, space exploration resource utilisation, FPGAs such as the KU060, PolarFire and NG-ULTRA are able to ingest and process Tbps of data from multiple sensors with low latency in real-time to deliver ASIC-class, system-level performance.
- For object classification, AI inference and autonomous decision making to enable feature identification or reconfigurable, cognitive transponders based on real-time traffic needs, Xilinx's ACAP would result in the most efficient vector-compute solution.
- Tesla and QLS1046-4GB will deliver in-orbit AI and ML at lower power dissipation and less financial cost, but I/O options and sensor fusion are limited!
- NG-ULTRA's quad R-52 cores will deliver in-orbit AI and ML at lower power dissipation and less financial cost, with FPGA fabric offering good sensor fusion.

Conclusion

- Spacechips is bringing-to-market a range of smart OBCs and transponders which enable in-orbit AI and ML, baselining the Tesla, Qormino, NG-ULTRA and Versal AI accelerators for different space applications.
- Spacechips is bringing-to-market an EM Versal Space Reference Designs (XCVC1902-1MSEVSVA2197) later this year to allow you to prototype and de-risk in-orbit AI and ML (133 TOPs).
- Spacechips is bringing-to-orbit a space-qualified Versal Space Reference Designs next year to allow you to implement AI and ML in-orbit.
- Orders for the XCVC1902-1MSEVSVA2197 EM Versal Space Reference Design currently being taken EM-grade parts, includes an EICD, an Instruction Manual and functional HDL to prove operation of the signal-chain blocks – no application code!
- In 2024, Spacechips will bring-to-market lower-power EM and FM versions of the Versal Space Reference Design baselining the smaller XCVE2302-1MLISFVA784 ACAP (35W, 45 TOPs, 34 AI, 150k LUTs, 324 DSP, 329k logic cells)
- Feedback is there something on the Versal Space Reference Design which you would like to see?

Space Electronics

Space-Grade and COTS FPGAs for Space Applications

Space-Systems Engineering

How to Select & Use COTS Components

PCB Design for Space Applications

Testing Satellite Payloads

Mission Design, Frequency Planning & Link-Budget Analyses

In-Orbit AI and Machine Learning for On-Board Processing

Satellite Applications, Remote Sensing and Geospatial Processing Dr. Rajan Bedi CEO Spacechips rajan@spacechipsllc.com

http://www.out-of-this-world-design.info/ https://www.linkedin.com/in/drrajanbedi/

The Global Space-Electronics Company www.spacechipsllc.com

Winner of European Start-Up of 2017 and European High-Reliability Product of 2016, 17 & 18