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• Funded by the German Science Foundation (DFG) under Germany’s 
Excellence Strategy (EXC 2094 – 390783311)

• Consortium of universities and research institutions in Munich
• Technical University of Munich (TUM), Ludwig-Maximilians-Universität (LMU)
• Max Planck Institutes for

• Astrophysics (MPA)
• Extraterrestrial Physics (MPE)
• Physics (MPP)
• Plasma Physics (IPP)
• Biochemistry (MPIB)

• European Southern Observatory (ESO)
• Leibniz Supercomputing Centre (LRZ)

• Common goal: Investigate the development of the Universe from the Big 
Bang to the emergence of life

Ø Space missions at the core of many research areas within ORIGINS
• Big-budget missions like Chandra, XMM-Newton, Euclid, Athena, … 
• Smaller missions fostered through a Laboratory for Rapid Space Missions

• Science missions on small satellites
• Technology demonstrations
• Experiments / instruments hosted on larger spacecraft
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Who We Are
Excellence Cluster ORIGINS



Hosted Payloads / Experiments
• RadMap Telescope on the International Space Station 

• Performs radiation measurements inside the U.S. Orbital Segment
• Demonstration of technologies for future human and robotic exploration missions
• Sponsered by the U.S. ISS National Laboratory

• IOV-1 experiment on the ArgUS M1 payload carrier
• Deployed to the Bartolomeo platform on the ISS
• Technology demonstrations & proof-of-principle tests

• Lunar Cosmic-Ray and Neutron Spectrometer (LCNS)
• Search for the signature of subsurface water on the Moon

• Lunar Volatiles Scout (LVS)
• Investigation of volatiles in the Moon’s shallow subsurface

• Contributions to ESA’s PROSPECT

Science Missions on (Dedicated) Small Satellites
• Antiproton Flux in Space (AFIS) – 3U or 6U CubeSat

• Measurement of the antiproton content in Earth’s Van Allen belts

• Compton Polarimetry (ComPol) – 3U or 6U CubeSat
• Long-term observations of the X-ray spectrum and polarization of Cygnus X-1
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What We Do
Small Science Missions and Hosted Payloads

Launched on SpX CRS-27



General Objective: Rapidly develop application-specific and reliable data-handling and processing solutions.

More widespread use of commercial / industrial-grade electronics
• Sensible choice for low-cost missions with limited duration & low reliability requirements
• BUT: Risk of failure is hard to mitigate and may be unacceptable

Small satellites (i.e., CubeSats) are evolving from educational / demonstrational platforms to scientific ones
• Longer mission durations required to successfully achieve scientific objectives
• Stricter reliability requirements
• Stricter data-integrity requirements
• Increasing computational demand for payload data processing

‘Traditional’ high-reliability solutions oftentimes not compatible with cost-constrained missions / payloads
• High costs & long lead times
• Technically not compatible: too large & too power-hungry
• ‘Outdated’ products with small user community

Ø ‘Intermediate’ solutions must provide sufficient reliability and flexibility at acceptable cost
• Caveat: Exact reliability requirements often hard to quantify due to cost / schedule constraints
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Data Handling for Small Satellites and Hosted Payloads
A Path towards Affordable Reliability



Data Handling for Small Satellites and Hosted Payloads

Functional Requirements (from reference missions)
• Interfaces to sensor front-end electronics & housekeeping

• 64 custom serial links (up to 16 MHz)
• 64 trigger inputs / outputs
• 64 SPI interfaces (multiplexed)
• 40 LVDS inputs / outputs

• In-orbit reconfiguration
• Trigger rates up 100 kHz

Reliability Requirements
• Baseline design lifetime of either

• Three years in high LEO (1000 km reference altitude) or
• Two years on lunar surface
Ø Survival of respective radiation / thermal / … environments

• Ensure integrity of science data during repeated passes of 
radiation belts / SAA for LEO missions

• Bit flips / SEU acceptable if they (randomly) affect less than 
1% of science data and are detected reliably

Design Philosophy
• Strict separation of payload data handling / processing and 

satellite telemetry / control (often not done for small-
satellite missions)

• Use radiation-tolerant (‘NewSpace’) components wherever 
possible

• If possible, use components with footprint-compatible and 
functionally equivalent commercial / automotive versions

• Use enhanced / screened components for non-critical 
functions

• Prefer components with a large user base / community
• ARM-based microcontrollers
• (Xilinx FPGAs (most in-house expertise))
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Application Example
RadMap / AFIS Sensor
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We require:
• Large number of (custom) interfaces
• Fully parallel data acquisition from (up to) 64 read-out ASICs
• Real-time trigger decisions, zero suppression, and pre-filtering of data (reconfigurable on orbit)

Ø Use of an FPGA is the ideal solution

Challenges of using FPGAs on small satellites / for small instruments (on a limited budget)
• Radiation-tolerant / radiation-hardened FPGAs are expensive

• ‘NewSpace’ products not (widely) available

• Graduate students at universities have no experience with space-grade FPGA ecosystems
• Comparatively high power consumption
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The Challenge
RadMap / AFIS Sensor
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A First Solution
RadMap Telescope on the ISS
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• Xilinx XQRKU060 field-programmable gate array (FPGA)
• Radiation-hardened (100 krad), high-performance FPGA
• Pin-compatible commercial equivalent available (XCKU060)

• Vorago Technologies VA41620 companion microcontroller
• Can be used to control FPGA configuration and for scrubbing
• Provides additional payload control and telemetry functionality
• FPGA can be switched off without losing control over payload

• MRAM for boot memory (16 Mbit) and FPGA configuration (256 Mbit)

• Interfaces: 100-Mbit Ethernet, SpaceWire, 2x CAN, 2x RS-422, I2C

• Add-on cards for
• Science data storage
• Computational accelerators (GPU, TPU, CPU)

Page 9

Future Solution
Hardware: Payload Data Processor (PDP)



Page 10

Future Solution
Configuration
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Using the VA41620 as companion for an FPGA has several strong advantages:
• Reliability of radiation-hardened microcontroller
• Comparatively inexpensive solution
• Potential of working with commercial-grade FPGA (depending on mission requirements)

• Variety of memory solutions become available
• Familiarity of (graduate) students with ARM-based systems

Functions that the companion provides:
• Scrubbing (!)
• On-orbit reconfiguration
• On-orbit debugging

• State machine control
• Off-loading of control / telemetry functions
• Power sequencing
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Advantages of Cortex-M4 Companion
Affordable Reliability



• Vorago Technologies VA41620 
• 32-bit ARM Cortex-M4 microcontroller @ 100 MHz
• Good radiation hardness (300 krad TID) at affordable price tag
• Low power consumption
• Widely familiar instruction set

• Aerospace-grade MRAM for
• Program / boot memory (2 MB)
• RAM (32 MB)
• Mass / data storage (up to 4 GB)

• Interfaces
• 2x CAN
• 2x RS-422
• 100-Mbit/s Ethernet
• SpaceWire
• 2x I2C
• 3x SPI
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Command and Data-Handling System
Common Hardware
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Overall System Architecture
Satellite Bus for AFIS and ComPol

• Most bus systems provided by commercial partners; PC/104 to custom backplane adapter for in-house systems
• System-wide, redundant CAN bus for telemetry and control
• Direct 100-Mbit/s Ethernet connection between payload and communication system; back up via RS-422 / CDH



Future use case is distributed control system with multiple nodes that flexibly share workload to increase fault tolerance
• Available frameworks, such as NASA’s cFS and F’, do not support such distributed systems out of the box

Ø Development of DOSIS (Distributed Operating System Initiative for Satellites) at TUM
• Based on DLR’s RODOS (Realtime On-Board Dependable Operating System)
• Network-centric operating system with simple publisher-subscriber message-passing system
• Simple hardware abstraction
• Thread-safe communications
• Priority-based real-time scheduler

• DOSIS-based firmware is a collection of interconnected component instances, each representing a single functional entity
• Modular approach to firmware design eases late addition of software components
• Independent components provide additional abstraction layer that allows distribution of task over multiple nodes

• Precise time synchronization in distributed systems
• Less than 2 ms timing uncertainty between nodes
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Software Architecture
Operating System



• In-orbit verification of instruments and 
data-handling systems aboard ISS

• Background measurements for later 
science missions

• Scaled-down instruments, each 
equipped with its own PDP

• 2x CDH prototypes
• Demonstration of distributed computing

• Attached to Bartolomeo platform on the 
European Columbus module

• 12-month operational period starting in 
early 2024
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In-Orbit Demonstration
IOV-1 on the International Space Station



• On-going development of two data-handling systems for small satellites based on microcontroller / FPGA combination
• Focus on reliability, flexibility, and ease of use
• Acceptable price tag for small-satellite missions and hosted payloads

• Flexible hardware and software architecture allows use beyond the two reference missions presented here

• In-orbit demonstration on the ISS to fully verify reliability and gain flight heritage

Please let us know in case you have any questions!

Contact: m.losekamm@tum.de
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Summary


