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* Funded by the German Science Foundation (DFG) under Germany’s
Excellence Strategy (EXC 2094 — 390783311)

» Consortium of universities and research institutions in Munich

» Technical University of Munich (TUM), Ludwig-Maximilians-Universitat (LMU)
« Max Planck Institutes for

+ Astrophysics (MPA)

+ Extraterrestrial Physics (MPE)

+  Physics (MPP)

+ Plasma Physics (IPP)

* Biochemistry (MPIB)
» European Southern Observatory (ESO)

» Leibniz Supercomputing Centre (LRZ)

« Common goal: Investigate the development of the Universe from the Big
Bang to the emergence of life

» Space missions at the core of many research areas within ORIGINS
» Big-budget missions like Chandra, XMM-Newton, Euclid, Athena, ...

» Smaller missions fostered through a Laboratory for Rapid Space Missions
+ Science missions on small satellites
+ Technology demonstrations
+ Experiments / instruments hosted on larger spacecraft



What We Do e m
Small Science Missions and Hosted Payloads of Munich
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Hosted Payloads / Experiments

+ RadMap Telescope on the International Space Station
* Performs radiation measurements inside the U.S. Orbital Segment
« Demonstration of technologies for future human and robotic exploration missions
» Sponsered by the U.S. ISS National Laboratory

|OV-1 experiment on the ArgUS M1 payload carrier
+ Deployed to the Bartolomeo platform on the ISS
» Technology demonstrations & proof-of-principle tests

Lunar Cosmic-Ray and Neutron Spectrometer (LCNS)
» Search for the signature of subsurface water on the Moon

Lunar Volatiles Scout (LVS)
+ Investigation of volatiles in the Moon’s shallow subsurface

Contributions to ESA's PROSPECT

Science Missions on (Dedicated) Small Satellites

» Antiproton Flux in Space (AFIS) — 3U or 6U CubeSat
* Measurement of the antiproton content in Earth’s Van Allen belts

« Compton Polarimetry (ComPol) — 3U or 6U CubeSat
* Long-term observations of the X-ray spectrum and polarization of Cygnus X-1



Data Handling for Small Satellites and Hosted Payloads Unershy m

A Path towards Affordable Reliability otiineh
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General Objective: Rapidly develop application-specific and reliable data-handling and processing solutions.

More widespread use of commercial / industrial-grade electronics
» Sensible choice for low-cost missions with limited duration & low reliability requirements

« BUT: Risk of failure is hard to mitigate and may be unacceptable

Small satellites (i.e., CubeSats) are evolving from educational / demonstrational platforms to scientific ones
» Longer mission durations required to successfully achieve scientific objectives
 Stricter reliability requirements
 Stricter data-integrity requirements
* Increasing computational demand for payload data processing

“Traditional’ high-reliability solutions oftentimes not compatible with cost-constrained missions / payloads
* High costs & long lead times
» Technically not compatible: too large & too power-hungry
« ‘Outdated’ products with small user community

> ‘Intermediate’ solutions must provide sufficient reliability and flexibility at acceptable cost
« Caveat: Exact reliability requirements often hard to quantify due to cost / schedule constraints



Data Handling for Small Satellites and Hosted Payloads Unershy m

Requirements and Design Philosophy

Functional Requirements (from reference missions)

 Interfaces to sensor front-end electronics & housekeeping
* 64 custom serial links (up to 16 MHz)
* 64 trigger inputs / outputs
* 64 SPI interfaces (multiplexed)
* 40 LVDS inputs / outputs

* In-orbit reconfiguration

« Trigger rates up 100 kHz

Reliability Requirements

« Baseline design lifetime of either
» Three years in high LEO (1000 km reference altitude) or
« Two years on lunar surface
» Survival of respective radiation / thermal / ... environments

« Ensure integrity of science data during repeated passes of
radiation belts / SAA for LEO missions

« Bit flips / SEU acceptabile if they (randomly) affect less than
1% of science data and are detected reliably

of Munich
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Design Philosophy

Strict separation of payload data handling / processing and
satellite telemetry / control (often not done for small-
satellite missions)

Use radiation-tolerant (‘NewSpace’) components wherever
possible
+ If possible, use components with footprint-compatible and
functionally equivalent commercial / automotive versions

Use enhanced / screened components for non-critical
functions
Prefer components with a large user base / community

« ARM-based microcontrollers
* (Xilinx FPGAs (most in-house expertise))
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The Challenge e m
RadMap / AFIS Sensor of Munich
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We require:
» Large number of (custom) interfaces
« Fully parallel data acquisition from (up to) 64 read-out ASICs

- Real-time trigger decisions, zero suppression, and pre-filtering of data (reconfigurable on orbit)

> Use of an FPGA is the ideal solution

Challenges of using FPGAs on small satellites / for small instruments (on a limited budget)

» Radiation-tolerant / radiation-hardened FPGAs are expensive
* ‘NewSpace’ products not (widely) available

» Graduate students at universities have no experience with space-grade FPGA ecosystems

» Comparatively high power consumption



A First Solution

RadMap Telescope on the ISS
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Flight Computer
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Future Solution e m
Hardware: Payload Data Processor (PDP) of Munich
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Xilinx XQRKUO060 field-programmable gate array (FPGA)
+ Radiation-hardened (100 krad), high-performance FPGA o Pl to CDH

« Pin-compatible commercial equivalent available (XCKUO060) o oM to COH
« Vorago Technologies VA41620 companion microcontroller &) |8 £2 BB E
« Can be used to control FPGA configuration and for scrubbing e

* Provides additional payload control and telemetry functionality

. . . |
« FPGA can be switched off without losing control over payload Il a o CAN |l
Ethernet : % Transceiver :
Transceiver | (<":) VA41620 I
« MRAM for boot memory (16 Mbit) and FPGA configuration (256 Mbit) s Microcontroller RSt :
X -
=== ': Transceiver |l
|
, . ' |
 Interfaces: 100-Mbit Ethernet, SpaceWire, 2x CAN, 2x RS-422, 12C [ Boot |
: Memory Firmware ||
: Storage |
XQRKUO060 | 16 Mbit MRAM .
e | 256 Mbit MRAM :
- Add-on cardsfor L TTT T T
« Science data storage Storage / Compute Unit Connector

« Computational accelerators (GPU, TPU, CPU)




Future Solution
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Advantages of Cortex-M4 Companion Unershy m
Affordable Rel/ab///ty of Munich
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Using the VA41620 as companion for an FPGA has several strong advantages:
 Reliability of radiation-hardened microcontroller

« Comparatively inexpensive solution

» Potential of working with commercial-grade FPGA (depending on mission requirements)
« Variety of memory solutions become available

« Familiarity of (graduate) students with ARM-based systems

Functions that the companion provides:
* Scrubbing (!)
« On-orbit reconfiguration

« On-orbit debugging

CQL1/6F0

Y VORAGO

« State machine control
« Off-loading of control / telemetry functions

« Power sequencing




Command and Data-Handling System

Common Hardware

» Vorago Technologies VA41620

32-bit ARM Cortex-M4 microcontroller @ 100 MHz

Good radiation hardness (300 krad TID) at affordable price tag
Low power consumption

Widely familiar instruction set

« Aerospace-grade MRAM for

Program / boot memory (2 MB)
RAM (32 MB)
Mass / data storage (up to 4 GB)

Interfaces

2x CAN

2x RS-422
100-Mbit/s Ethernet
SpaceWire

2x 12C

3x SPI
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Overall System Architecture Unersiy m
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* Most bus systems provided by commercial partners; PC/104 to custom backplane adapter for in-house systems
« System-wide, redundant CAN bus for telemetry and control

» Direct 100-Mbit/s Ethernet connection between payload and communication system; back up via RS-422 / CDH



Software Architecture Unershy m
Operating System of Munich
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Future use case is distributed control system with multiple nodes that flexibly share workload to increase fault tolerance
* Available frameworks, such as NASA’'s cFS and F’, do not support such distributed systems out of the box

» Development of DOSIS (Distributed Operating System Initiative for Satellites) at TUM
+ Based on DLR’s RODOS (Realtime On-Board Dependable Operating System)
* Network-centric operating system with simple publisher-subscriber message-passing system
» Simple hardware abstraction
* Thread-safe communications
 Priority-based real-time scheduler

« DOSIS-based firmware is a collection of interconnected component instances, each representing a single functional entity
* Modular approach to firmware design eases late addition of software components
» Independent components provide additional abstraction layer that allows distribution of task over multiple nodes

@oosis

« Precise time synchronization in distributed systems
* Less than 2 ms timing uncertainty between nodes




In-Orbit Demonstration

IOV-1 on the International Space Station

 In-orbit verification of instruments and
data-handling systems aboard ISS

» Background measurements for later
science missions

» Scaled-down instruments, each
equipped with its own PDP

» 2x CDH prototypes
» Demonstration of distributed computing

» Attached to Bartolomeo platform on the
European Columbus module

* 12-month operational period starting in
early 2024
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* On-going development of two data-handling systems for small satellites based on microcontroller / FPGA combination
* Focus on reliability, flexibility, and ease of use
» Acceptable price tag for small-satellite missions and hosted payloads

« Flexible hardware and software architecture allows use beyond the two reference missions presented here

* In-orbit demonstration on the ISS to fully verify reliability and gain flight heritage

Please let us know in case you have any questions!

Contact: m.losekamm@tum.de



