Kintex UltraScale FPGAs with Radiation-Hardened ARM Companion Microcontrollers

5th SpacE FPGA Users Workshop

Martin J. Losekamm | Technical University of Munich (TUM) Mar 14 – Mar 16, 2023

ORIGINS

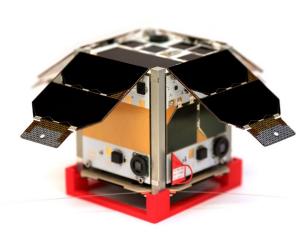
Excellence Cluste

Who We Are

Excellence Cluster ORIGINS

- Funded by the German Science Foundation (DFG) under Germany's Excellence Strategy (EXC 2094 – 390783311)
- Consortium of universities and research institutions in Munich
 - Technical University of Munich (TUM), Ludwig-Maximilians-Universität (LMU)
 - Max Planck Institutes for
 - Astrophysics (MPA)
 - Extraterrestrial Physics (MPE)
 - Physics (MPP)
 - Plasma Physics (IPP)
 - Biochemistry (MPIB)
 - European Southern Observatory (ESO)
 - Leibniz Supercomputing Centre (LRZ)
- Common goal: Investigate the development of the Universe from the Big Bang to the emergence of life
- Space missions at the core of many research areas within ORIGINS
 - Big-budget missions like Chandra, XMM-Newton, Euclid, Athena, ...
 - Smaller missions fostered through a Laboratory for Rapid Space Missions
 - Science missions on small satellites
 - Technology demonstrations
 - Experiments / instruments hosted on larger spacecraft

What We Do


Small Science Missions and Hosted Payloads

Hosted Payloads / Experiments


- RadMap Telescope on the International Space Station
- Launched on SpX CRS-27 Performs radiation measurements inside the U.S. Orbital Segment
 - Demonstration of technologies for future human and robotic exploration missions ٠
 - Sponsered by the U.S. ISS National Laboratory •
- IOV-1 experiment on the ArgUS M1 payload carrier •
 - Deployed to the Bartolomeo platform on the ISS
 - Technology demonstrations & proof-of-principle tests
- Lunar Cosmic-Ray and Neutron Spectrometer (LCNS) •
 - Search for the signature of subsurface water on the Moon •
- Lunar Volatiles Scout (LVS) •
 - Investigation of volatiles in the Moon's shallow subsurface
- Contributions to ESA's PROSPECT •

Science Missions on (Dedicated) Small Satellites

- Antiproton Flux in Space (AFIS) 3U or 6U CubeSat •
 - Measurement of the antiproton content in Earth's Van Allen belts
- Compton Polarimetry (ComPol) 3U or 6U CubeSat •
 - Long-term observations of the X-ray spectrum and polarization of Cygnus X-1

Data Handling for Small Satellites and Hosted Payloads

A Path towards Affordable Reliability

General Objective: <u>Rapidly</u> develop application-specific and reliable data-handling and processing solutions.

Technical

University of Munich

2ade 4

More widespread use of commercial / industrial-grade electronics

- Sensible choice for low-cost missions with limited duration & low reliability requirements
- BUT: Risk of failure is hard to mitigate and may be unacceptable

Small satellites (i.e., CubeSats) are evolving from educational / demonstrational platforms to scientific ones

- Longer mission durations required to successfully achieve scientific objectives
- Stricter reliability requirements
- Stricter data-integrity requirements
- Increasing computational demand for payload data processing

'Traditional' high-reliability solutions oftentimes not compatible with cost-constrained missions / payloads

- High costs & long lead times
- Technically not compatible: too large & too power-hungry
- 'Outdated' products with small user community

'Intermediate' solutions must provide sufficient reliability and flexibility at acceptable cost

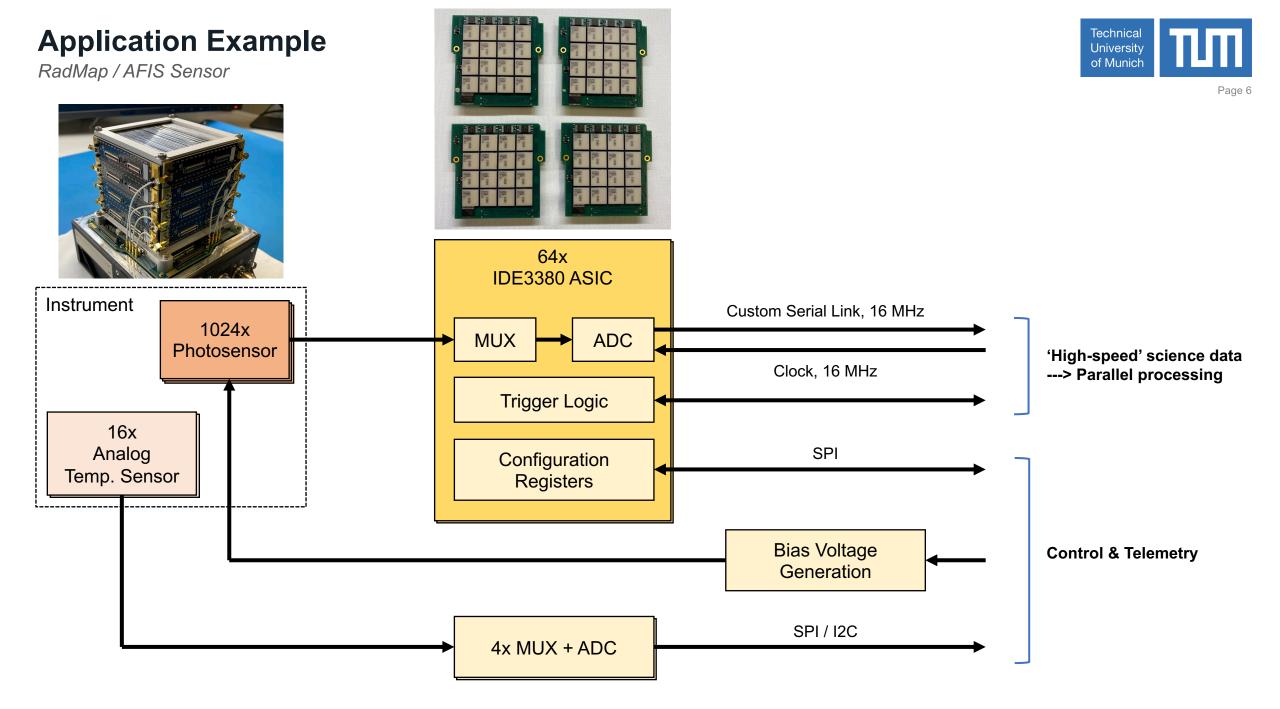
Caveat: Exact reliability requirements often hard to quantify due to cost / schedule constraints

Data Handling for Small Satellites and Hosted Payloads

Requirements and Design Philosophy

Page 5

Functional Requirements (from reference missions)


- Interfaces to sensor front-end electronics & housekeeping
 - 64 custom serial links (up to 16 MHz)
 - 64 trigger inputs / outputs
 - 64 SPI interfaces (multiplexed)
 - 40 LVDS inputs / outputs
- In-orbit reconfiguration
- Trigger rates up 100 kHz

Reliability Requirements

- Baseline design lifetime of either
 - Three years in high LEO (1000 km reference altitude) or
 - Two years on lunar surface
 - Survival of respective radiation / thermal / ... environments
- Ensure integrity of science data during repeated passes of radiation belts / SAA for LEO missions
- Bit flips / SEU acceptable if they (randomly) affect less than 1% of science data and are detected reliably

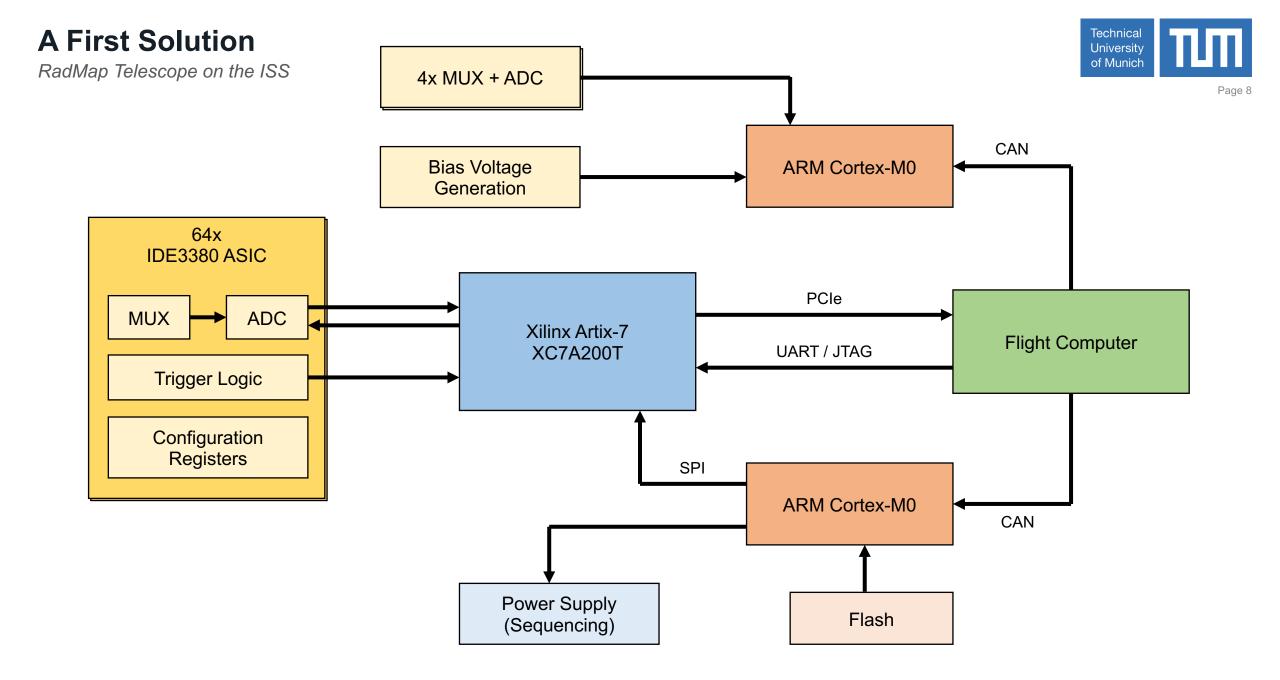
Design Philosophy

- Strict separation of payload data handling / processing and satellite telemetry / control (often not done for smallsatellite missions)
- Use radiation-tolerant ('NewSpace') components wherever possible
 - If possible, use components with footprint-compatible and functionally equivalent commercial / automotive versions
- Use enhanced / screened components for non-critical functions
- Prefer components with a large user base / community
 - ARM-based microcontrollers
 - (Xilinx FPGAs (most in-house expertise))

Page 7

The Challenge

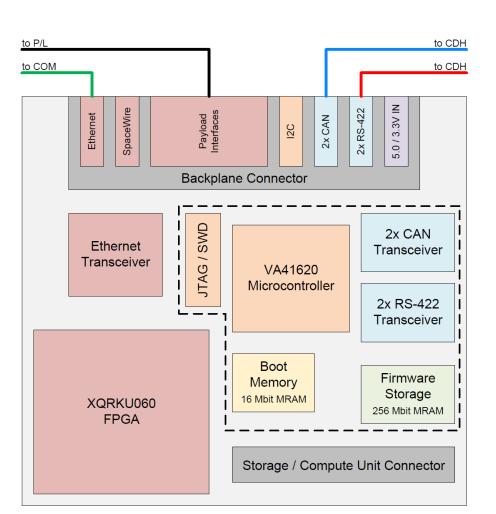
RadMap / AFIS Sensor

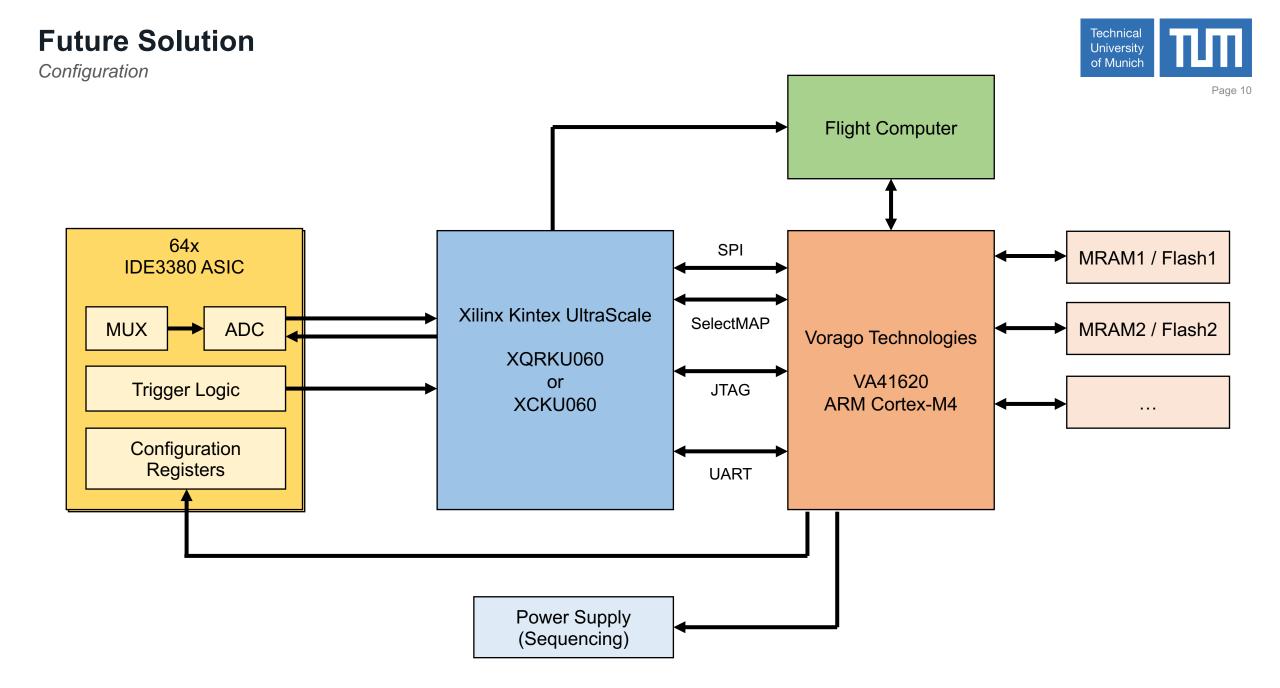

We require:

- Large number of (custom) interfaces
- Fully parallel data acquisition from (up to) 64 read-out ASICs
- Real-time trigger decisions, zero suppression, and pre-filtering of data (reconfigurable on orbit)

Use of an FPGA is the ideal solution

Challenges of using FPGAs on small satellites / for small instruments (on a limited budget)


- Radiation-tolerant / radiation-hardened FPGAs are expensive
 - 'NewSpace' products not (widely) available
- Graduate students at universities have no experience with space-grade FPGA ecosystems
- Comparatively high power consumption


Future Solution

Hardware: Payload Data Processor (PDP)

- Xilinx XQRKU060 field-programmable gate array (FPGA)
 - Radiation-hardened (100 krad), high-performance FPGA
 - Pin-compatible commercial equivalent available (XCKU060)
- Vorago Technologies VA41620 companion microcontroller
 - Can be used to control FPGA configuration and for scrubbing
 - · Provides additional payload control and telemetry functionality
 - FPGA can be switched off without losing control over payload
- MRAM for boot memory (16 Mbit) and FPGA configuration (256 Mbit)
- Interfaces: 100-Mbit Ethernet, SpaceWire, 2x CAN, 2x RS-422, I2C
- Add-on cards for
 - Science data storage
 - Computational accelerators (GPU, TPU, CPU)

Advantages of Cortex-M4 Companion

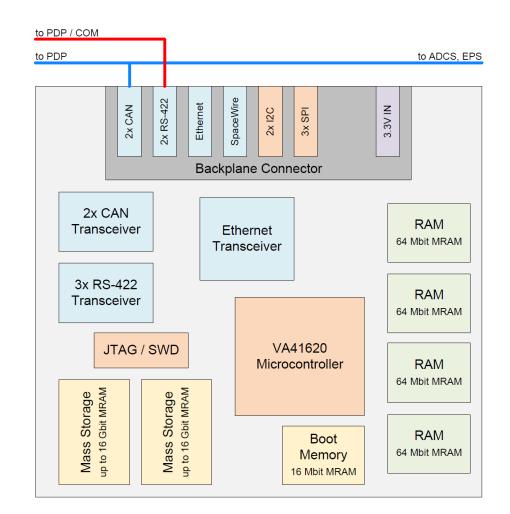
Affordable Reliability

Using the VA41620 as companion for an FPGA has several strong **advantages**:

- Reliability of radiation-hardened microcontroller
- Comparatively inexpensive solution
- Potential of working with commercial-grade FPGA (depending on mission requirements)
- Variety of memory solutions become available
- Familiarity of (graduate) students with ARM-based systems

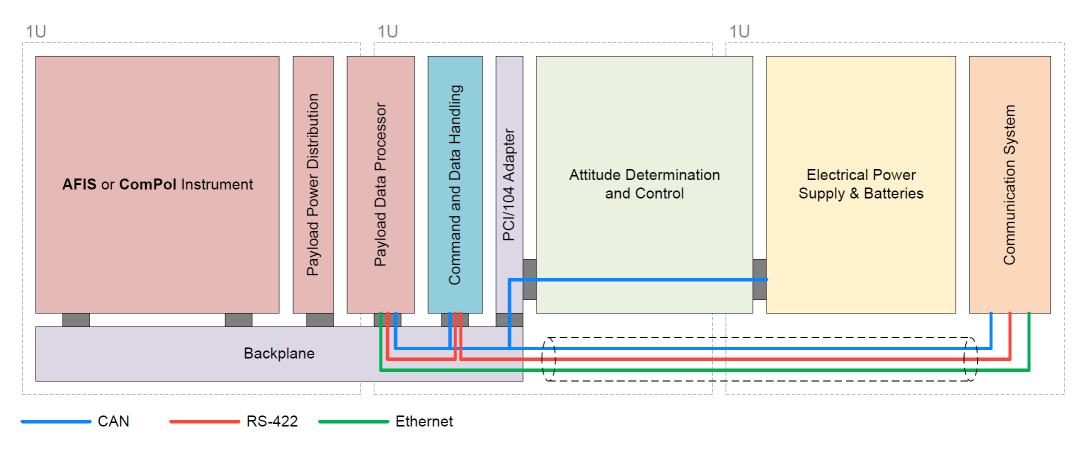
Functions that the companion provides:

- Scrubbing (!)
- On-orbit reconfiguration
- On-orbit debugging
- State machine control
- Off-loading of control / telemetry functions
- Power sequencing



Command and Data-Handling System

Common Hardware


- Vorago Technologies VA41620
 - 32-bit ARM Cortex-M4 microcontroller @ 100 MHz
 - Good radiation hardness (300 krad TID) at affordable price tag
 - Low power consumption
 - Widely familiar instruction set
- Aerospace-grade MRAM for
 - Program / boot memory (2 MB)
 - RAM (32 MB)
 - Mass / data storage (up to 4 GB)
- Interfaces
 - 2x CAN
 - 2x RS-422
 - 100-Mbit/s Ethernet
 - SpaceWire
 - 2x I2C
 - 3x SPI

Overall System Architecture

Satellite Bus for AFIS and ComPol

- Most bus systems provided by commercial partners; PC/104 to custom backplane adapter for in-house systems
- System-wide, redundant CAN bus for telemetry and control
- Direct 100-Mbit/s Ethernet connection between payload and communication system; back up via RS-422 / CDH

Page 13

Technical University of Munich

Software Architecture

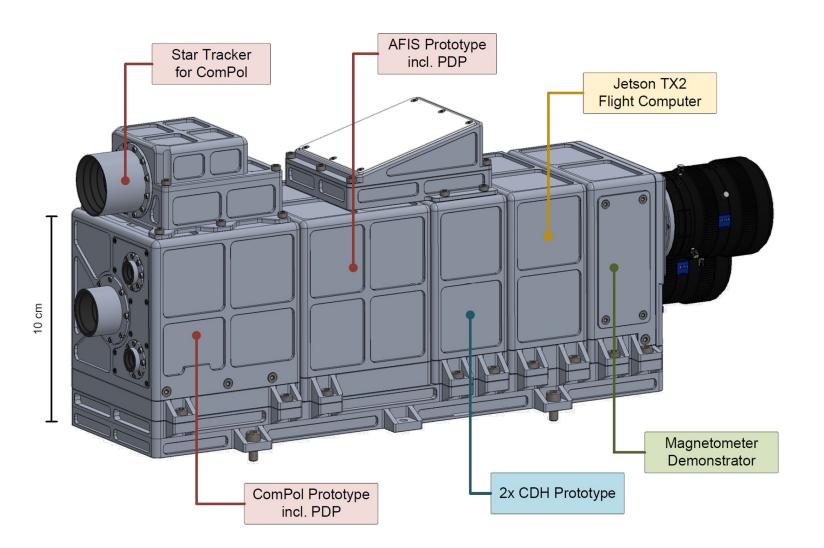
Operating System

Page 14

Future use case is distributed control system with multiple nodes that flexibly share workload to increase fault tolerance

• Available frameworks, such as NASA's cFS and F', do not support such distributed systems out of the box

> Development of DOSIS (Distributed Operating System Initiative for Satellites) at TUM


- Based on DLR's RODOS (Realtime On-Board Dependable Operating System)
- Network-centric operating system with simple publisher-subscriber message-passing system
- Simple hardware abstraction
- Thread-safe communications
- Priority-based real-time scheduler
- DOSIS-based firmware is a collection of interconnected component instances, each representing a single functional entity
 - · Modular approach to firmware design eases late addition of software components
 - Independent components provide additional abstraction layer that allows distribution of task over multiple nodes
- Precise time synchronization in distributed systems
 - Less than 2 ms timing uncertainty between nodes

In-Orbit Demonstration

IOV-1 on the International Space Station

- In-orbit verification of instruments and data-handling systems aboard ISS
- Background measurements for later science missions
- Scaled-down instruments, each equipped with its own PDP
- 2x CDH prototypes
 - Demonstration of distributed computing
- Attached to Bartolomeo platform on the European Columbus module
- 12-month operational period starting in early 2024

Summary

Page 16

- On-going development of two data-handling systems for small satellites based on microcontroller / FPGA combination
 - Focus on reliability, flexibility, and ease of use
 - Acceptable price tag for small-satellite missions and hosted payloads
- Flexible hardware and software architecture allows use beyond the two reference missions presented here
- In-orbit demonstration on the ISS to fully verify reliability and gain flight heritage

Please let us know in case you have any questions!

Contact: m.losekamm@tum.de