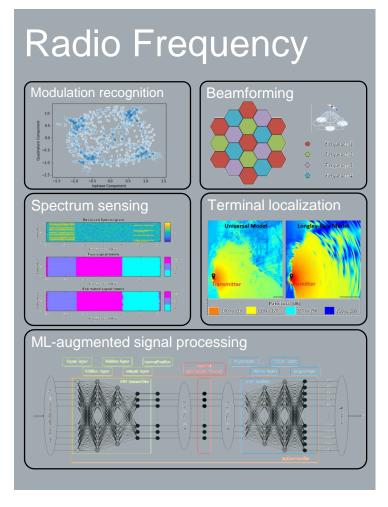
Accelerated Deep Learning Inference on FPGAs in the Space Domain

SpacE FPGA Users Workshop 2023

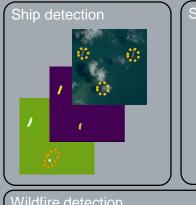
DEFENCE AND SPACE

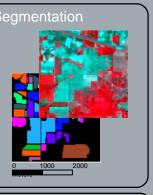
<Name> March 16, 2023



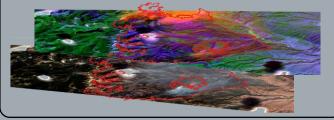
Part 1:

Deep Learning in the Space Domain


Artificial Intelligence in Space

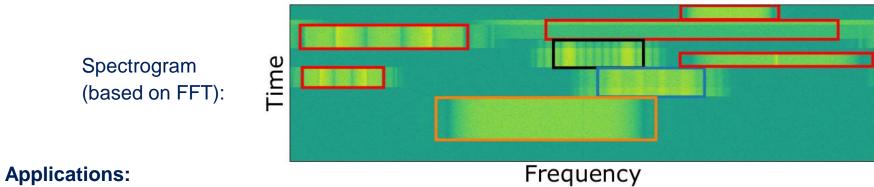


Anomaly Detection Prediction of known failures Detection of unknown anomalies Warnings on health status Anomal Time Corona discharge detection


Computer Vision

On-board processing of satellite images

Wildfire detection

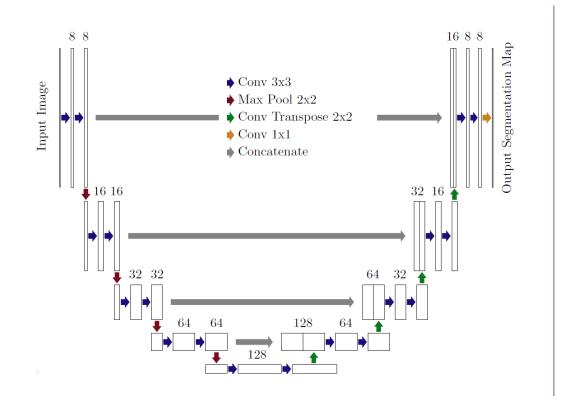


Use Case: Spectrum Analysis

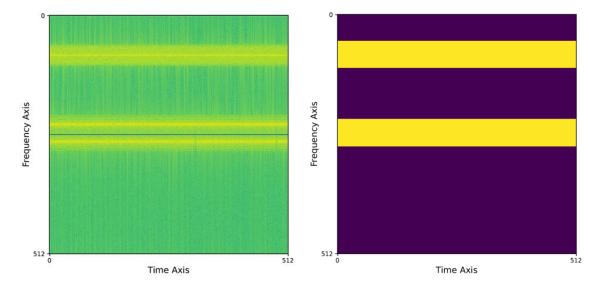
Goals:

1) Detecting the **presence** of signals in the electromagnetic spectrum (Signal-of-Interest / Interference)

2) Estimating the "**location**" of present signals (Center frequency / Bandwidth / Duration)


Monitoring of the electromagnetic spectrum from space (Regulatory purposes)

"Intelligent" radios can use the information about spectrum occupancy for opportunistically accessing unused / underutilized frequency bands ("Dynamic Spectrum Access")



Use Case: Spectrum Analysis

ML Approach: U-Net based **Convolutional Neural Network** for image segmentation

Inputs: 512 x 512 Spectrogram "Images"

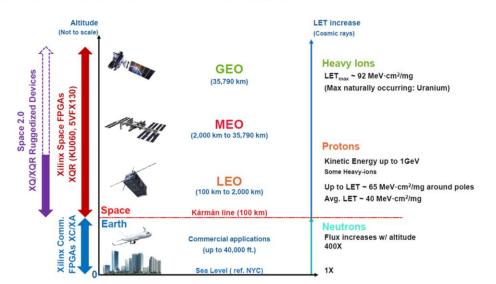
Outputs: 512 x 512 Segmentation Maps

Part 2:

Xilinx Versal for Space Applications

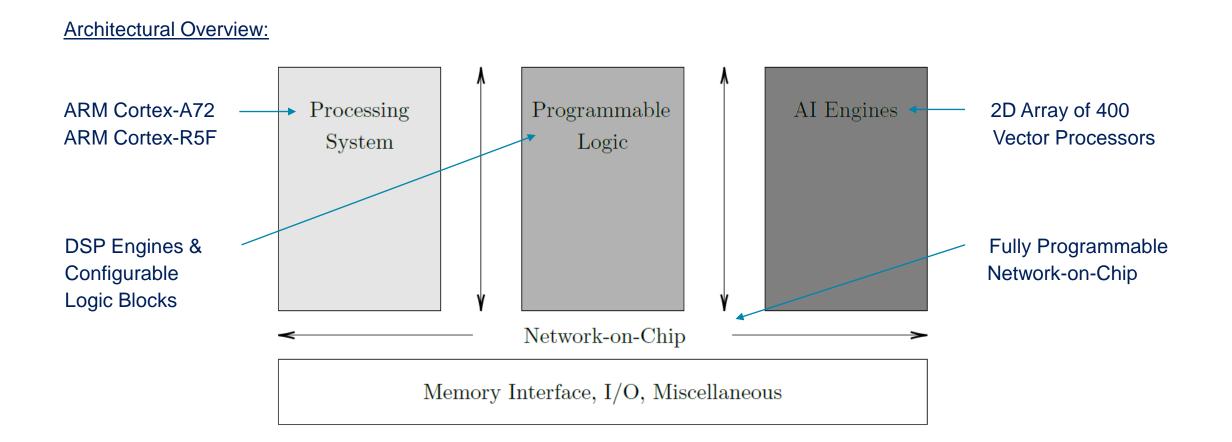
AIRBUS

Space-Grade Versal ACAP


The space-grade Versal is a radiation tolerant System-on-Chip intended for Satellite & Space applications

Its powerful, heterogeneous processing architecture enables a multitude of **Space 2.0 applications**:

- Machine Learning & Artificial Intelligence
- Broadband Internet
- High-Speed Networks
- Cloud & Object Detection
- ...


Features of the XQR Versal:

- Designed for LEO missions with a duration of 5 to 7 years
- Xilinx Soft Error Mitigation (XilSEM) Library for Detecting & Correcting Soft Errors (Single Event Upsets)
- Ruggedized Organic Packaging
- ITAR-free, but US Technology

Radiation Environment vs. Altitude

Versal Architecture

Versal AI Engines

Make use of three levels of computing parallelism:

1. Data-Level (SIMD):

Vector operations, e.g. addition of two int32 vectors with 16 elements -> add16(v16int32 x, v16int32 y)

2. Instruction-Level (VLIW):

Execution of up to 7 operations in parallel (Load x2, Store, Scalar Op, Move x2, Vector Op)

3. Multicore-Level:

Up to 400 AI Engines working in parallel in a 2D array

AIRBUS

Machine Learning on FPGAs

Three general approaches for Accelerating ML Applications on FPGA-based systems:

- 1. Use of a predesigned, generic (programmable) co-processor IP Core for executing neural networks
- 2. Use of an automatic framework to generate HDL/HLS design for a co-processor that targets a specific neural network

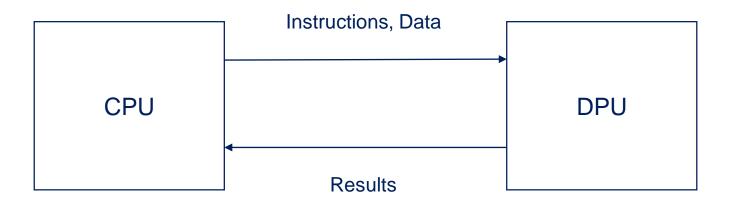
3. Design of a custom coprocessor in HDL/HLS for executing a specific neural network

e.g. Xilinx Deep Learning Processing Unit

e.g. MATLAB HDLCoder, FINN

e.g. VHDL, Vitis HLS

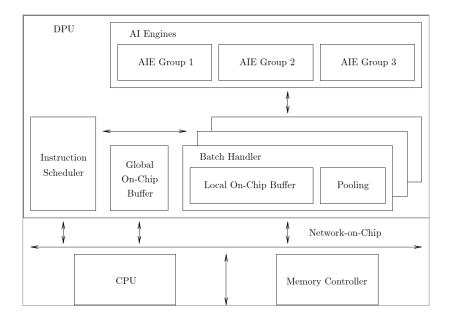
(Currently not well suited for the Versal due to its heterogeneous architecture)


Part 3:

Inference via Predesigned IP Cores

Xilinx Deep Learning Processing Unit

- Xilinx Deep Learning Processing Units (DPUs) are predesigned IP Cores optimized for executing neural networks
- In particular, DPUs are **Co-Processors** / Hardware Accelerators controlled by means of dedicated instructions
- Neural networks are automatically quantized and compiled into instructions for the DPU via Xilinx tools


DPU uses both the PL resources as well as the AI Engines !

Overview of the Development Flow

Hardware

Xilinx Deep Learning Processing Unit (DPU)

- Programmable IP Core
- Supports a variety of network layers, e.g.
 Conv2D / 3D, Dense, Max Pooling

AIRBUS

Use Case: Spectrum Analysis

Performance Comparison:

Zynq UltraScale+

Versal ACAP

- DPU Configuration: Maximum Resources

PL Frequency: 325 MHz

Minimum Resources

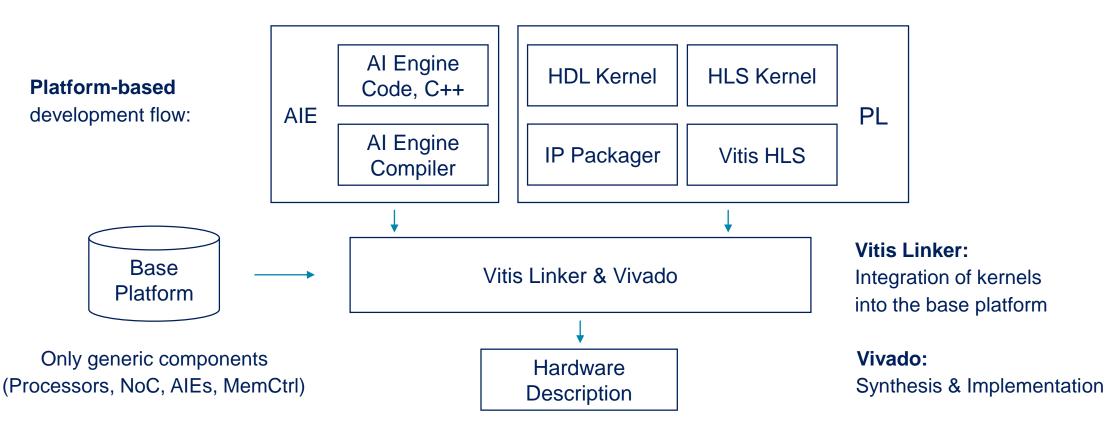
PL Frequency: 333 MHz AIE Frequency: 1250 MHz

- **Performance Metrics:** Throughput: Latency:

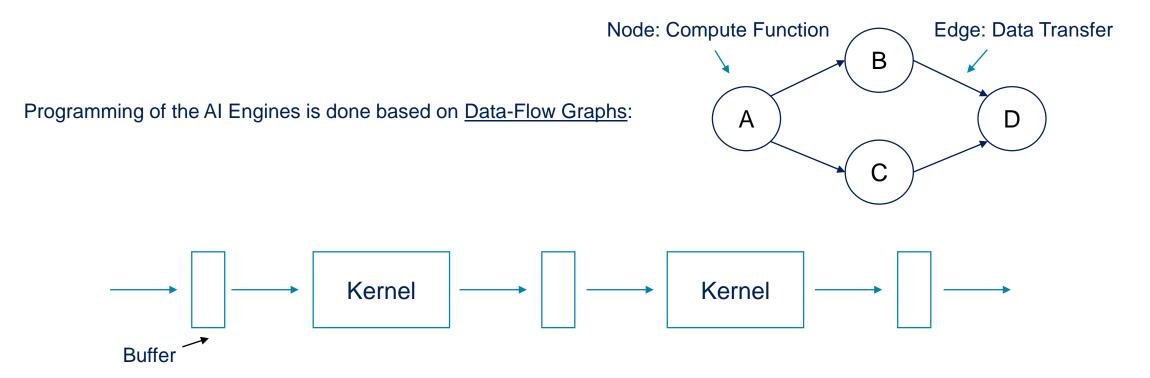
50 frames / second 19.4 milliseconds Throughput:79 frames / secondLatency:12.3 milliseconds

- Main Challenge: Higher power consumption of the Versal compared to the UltraScale+!

Part 4:


Inference via Custom Co-Processors

Application Acceleration on the Versal


Heterogeneous Versal platform requires a Hardware/Software-Codesign approach !

-> Partitioning of the application into functions that are executed on the PL resources and AIEs, respectively

Al Engine Programming Model

Communication:

- Kernel waits until input buffer is full
- Kernel is executed and writes data into output buffer

Computation:

- Data is loaded into vector registers
- Vector functions operate on data in registers (e.g. add, mul, ...)

AIRBUS

Al Engine Programming

```
static int8 weights [128] = \{ \dots \};
static int16 bias[8] = { ... };
static v16int8 prev;
```

// Weights and bias values // are permanently stored in // the AIE data memory

Example: Implementation of a **1D** Convolution Layer on the AIEs

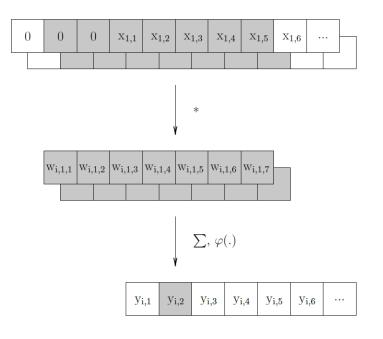
void conv1d(input_window_int8 * in, output_window_int8 * out) {

```
v16int8 curr = window readincr v16( in ); // Read in data samples from the input buffer
v32int8 X = concat(prev, curr);
v64int8 Y:
v8acc48 acc:
```

// Accumulator registers store the intermediate multiplication results

```
for (unsigned i=0; i<8; i++) {
  acc = ups(bias, B_SHFT);
                                             // Initialize accumulators with bias values
  acc = mac8( acc, weights, ..., X, 2*i, ...); // Accumulate the results of the matrix-vector multiplication
  Y = upd_v(Y, i, srs(acc, S_SHFT));
                                           // Place the results into the output vector
Y = maxdiff(Y, null v64int8());
                                            // Apply the ReLU activation function to the output vector
window writeincr(out, Y);
                                             // Write the results to the output buffer
prev = curr;
```


Appendix: 1D Convolution Layer


One-Dimensional Convolution Operation for CNNs:

Mathematical Description

$$y_{i,j} = \varphi \left(\sum_{k=1}^{7} w_{i,1,k} x_{1,j-1+k} + \sum_{k=1}^{7} w_{i,2,k} x_{2,j-1+k} + b_i \right)$$
$$= \varphi \left(\sum_{l=1}^{2} \sum_{k=1}^{7} w_{i,l,k} x_{l,j-1+k} + b_i \right)$$
$$= \varphi \left(\sum_{k=1}^{7} \sum_{l=1}^{2} w_{i,l,k} x_{l,j-1+k} + b_i \right),$$

-> Realization as matrix-vector-multiplication

Graphical Illustration

Thank you!

AIRBUS

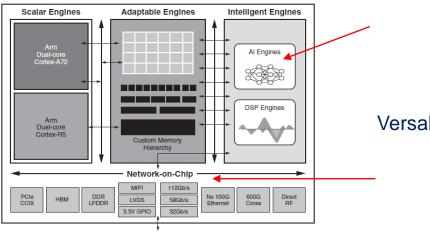
Hardware Platforms

Versal AI Core VC1902

Processor System Arm Cortex-A72 (x2)

Programmable Logic & Engines

Arm Cortex-R5F (x2)


Lookup Tables (900k) DSP Engines (x1968) AI Engines (x400)

Zyng UltraScale+ ZU9EG

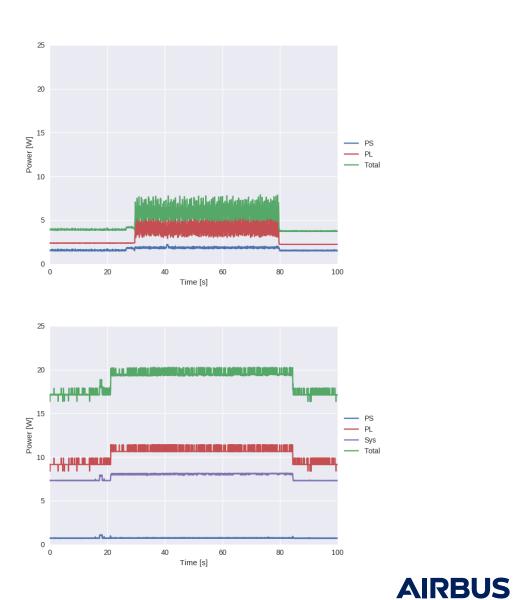
Processor System Arm Cortex-A53 (x4) Arm Cortex-R5F (x2)

Programmable Logic & Engines Lookup Tables (274k)

DSP Engines (x2520)

Versal Architecture

Challenges: Power Consumption


Example: Power Consumption for Inference with the DPU

Zynq UltraScale+:

Resource	Utilization	
LUT	(52k / 274k)	19 %
DSP	(710 / 2520)	28 %

Versal:

Resource	Utilization		
LUT	(81k / 900k)	9 %	
DSP	(139 / 1968)	7 %	
AIE	(32 / 400)	8 %	

