

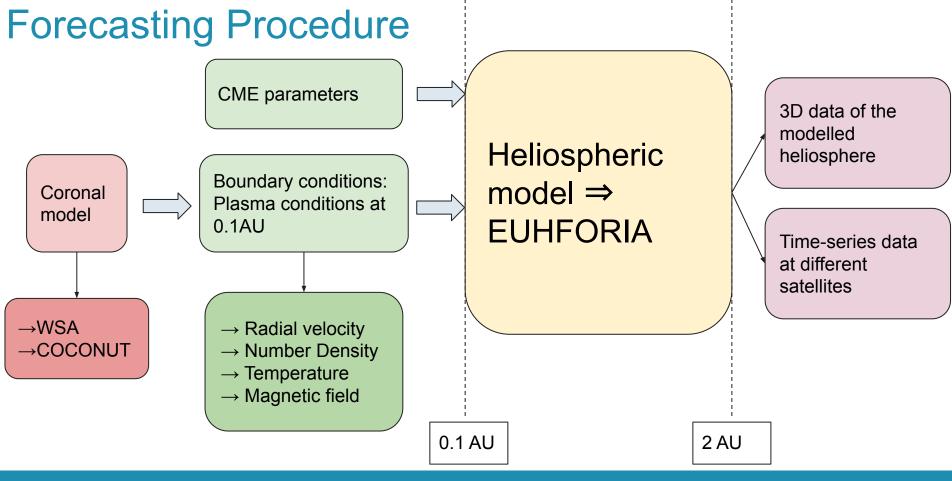
<u>Tinatin Baratashvili</u>¹, C. Verbeke^{2,1}, S. Poedts^{1,3}

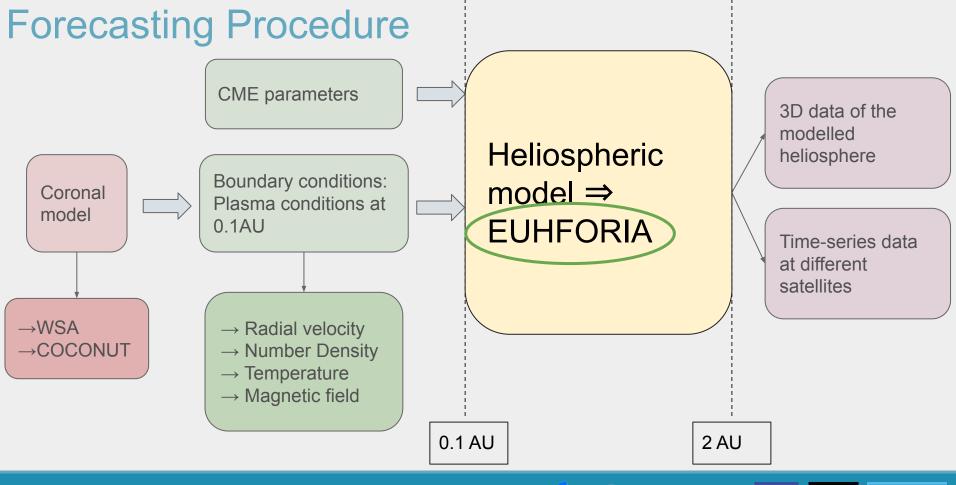
¹ KU Leuven, Mathematics, Centre for mathematical Plasma Astrophysics, Leuven,

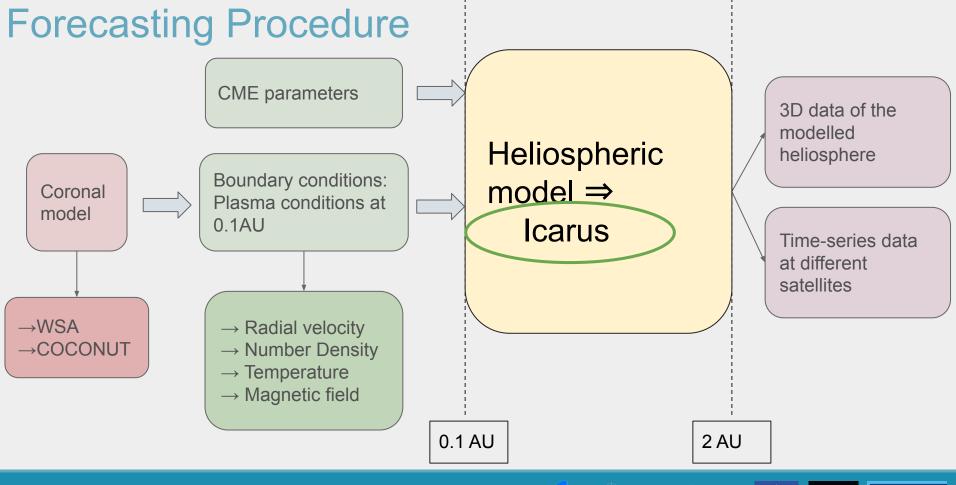
² Royal Observatory of Belgium, Brussels, Belgium,

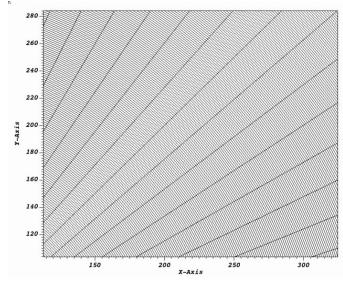
³ Institute of Physics, University of Maria Curie-Skłodowska, Lublin, Poland

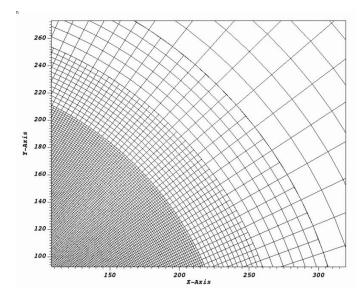
Space Weather Modelling Workshop 2023 ESA/ESOC











Motivation

- Operational perspective
 - Optimization (grid stretching & Adaptive Mesh Refinement) in Icarus ⇒ CPU time
 saved

Equidistant grid

Stretched grid with AMR

Motivation

- Operational perspective
 - Optimization (grid stretching & Adaptive Mesh Refinement) in Icarus ⇒ CPU time saved
- Physics perspective
 - Better capturing of CIRs or CIR shocks or CMEs or CME shocks (via AMR)

Icarus model

Implemented in the framework of MPI-AMRVAC (Xia et al., 2018)

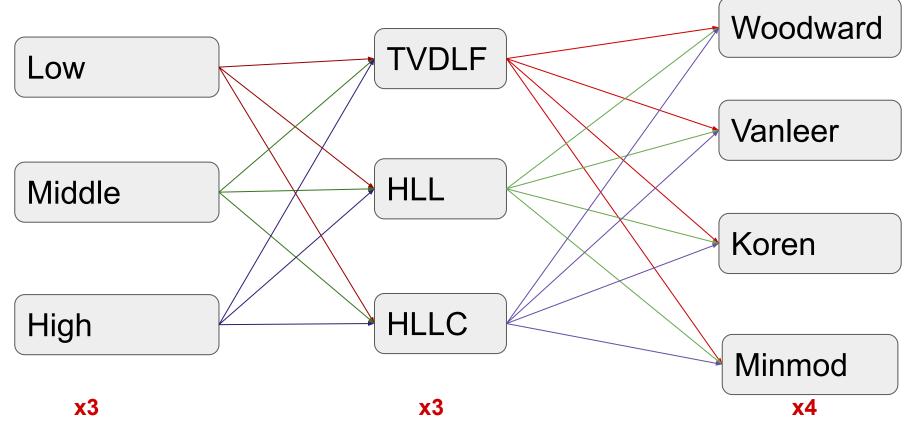
- MPI-AMRVAC is a parallel adaptive mesh refinement framework (in FORTRAN)
- Solves (primarily hyperbolic) partial differential equations
- Ideal MHD module

$$egin{aligned} rac{\partial
ho}{\partial t} +
abla \cdot (
ho \mathbf{v}) &= 0, \ rac{\partial (
ho \mathbf{v})}{\partial t} +
abla \cdot \left(
ho \mathbf{v} \mathbf{v} + p_{tot} \mathbf{I} - \mathbf{B} \mathbf{B}
ight) -
ho \mathbf{g} &= \mathbf{F}, \ rac{\partial e}{\partial t} +
abla \cdot \left(e \mathbf{v} + p_{tot} \mathbf{v} - \mathbf{B} (\mathbf{B} \cdot \mathbf{v})
ight) &= \mathbf{v} \cdot \mathbf{F} +
ho \mathbf{v} \cdot \mathbf{g}, \ rac{\partial \mathbf{B}}{\partial t} +
abla \cdot \left(\mathbf{v} \mathbf{B} - \mathbf{B} \mathbf{v}
ight) &= 0, \
abla \cdot \mathbf{B} &= 0, \end{aligned}$$

Equidistant grid	$\begin{array}{c} \textbf{Resolution} \\ [\textbf{R}_{\odot}, \textbf{DEG}, \textbf{DEG}] \end{array}$	
Low	[1.37, 3.75, 3.75]	
Middle	[0.685, 1.875, 1.875]	
High	[0.3425, 0.9375, 0.9375]	

Icarus vs. EUHFORIA

	Icarus	EUHFORIA
Numerical Domain	R: $0.1AU \rightarrow 2AU$ $\phi: 0^{\circ} \rightarrow 360^{\circ}$ $\theta: -60^{\circ} \rightarrow 60^{\circ}$	R: $0.1AU \rightarrow 2AU$ $\phi: 0^{\circ} \rightarrow 360^{\circ}$ $\theta: -60^{\circ} \rightarrow 60^{\circ}$
Coordinate system	Co-rotating	HEEQ
Computational Grid	Uniform; Radially Stretched; Adaptive Mesh Refinement (AMR)	
MHD Solver	Finite Volume	FV with Constrained transport



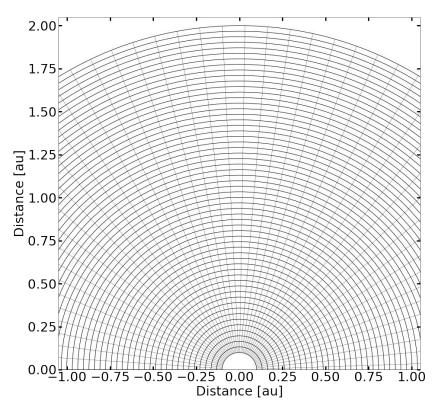
Schemes and Limiters

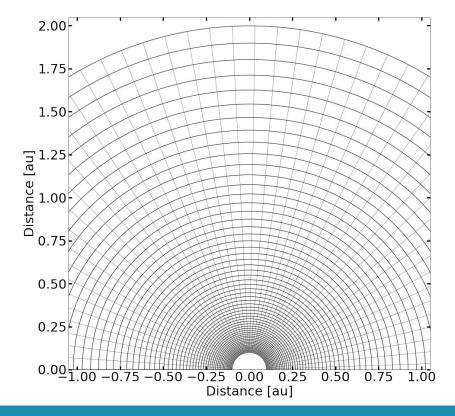
Schemes and Limiters Woodward **TVDLF** Low Vanleer 36 simulations Middle Koren HLLC High Minmod **x3 x3 x4**

Schemes and Limiters Woodward **TVDLF** Low **TVDLF + WOODWARD:** Vanleer Middle **Sharpest Fastest** Koren HLLC High Minmod

x3

x4




x3

Advanced techniques: Grid Stretching

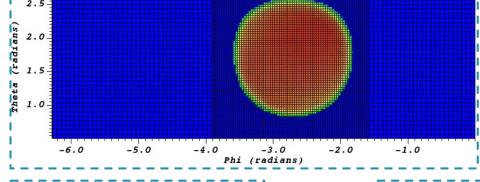
Non-stretched grid N=60.

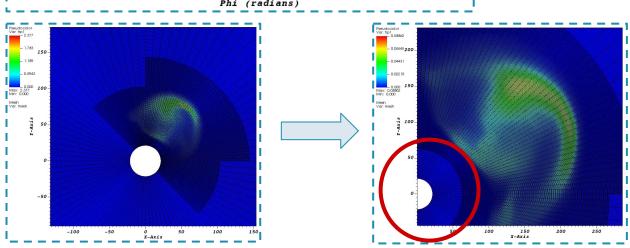
Stretched grid N=60.

Advanced techniques: Adaptive Mesh Refinement

- Refinement applied to the blocks of cells
- 1 level of refinement difference between the adjacent blocks
- Implemented condition controls the refinement in the domain

Higher resolution in the domain only where necessary.





Advanced techniques: AMR

Inner boundary slice

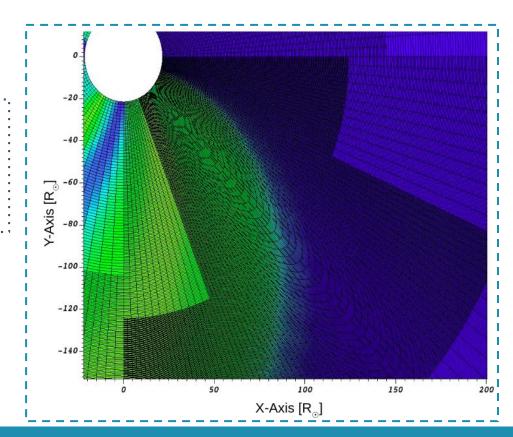
Equatorial plane

AMR (uniform) - CIR refinement

$$\phi = \phi_0 + rac{r-r_i}{U} st \Omega$$

φ - the longitude that needs to be refined,

 ϕ_0 and \mathbf{r} - the coordinates of a point


 $\mathbf{r}_1 = 0.1 \mathrm{AU}$

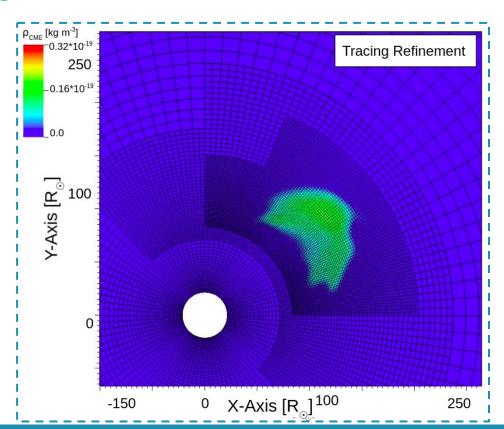
U - the characteristic speed of the fast stream

 Ω - the rotation rate of the Sun.

$$\phi_{lower} < \phi < \phi_{upper}$$

Aimed for SEPs → **PARADISE**

AMR Equidistant - Tracing function

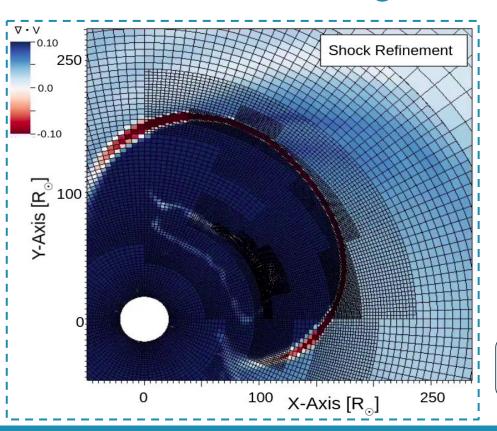

Tracing function F_{TR} :

If CME is present $\rightarrow F_{TR} =$

 ρ_{CME} If CME is NOT present $\rightarrow F_{TR} = 0$

Criterium: $F_{TR} > 0$

Aimed for complex CME interior

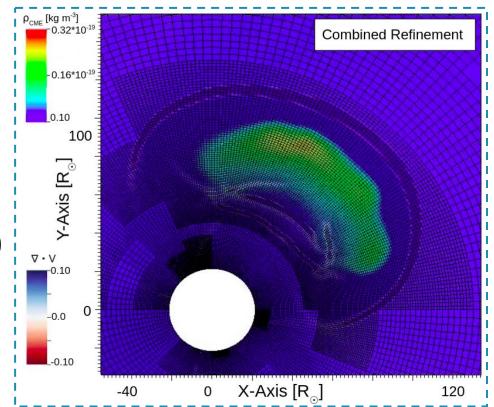


AMR on a stretched grid: Shock function

Refinement according to the compressed regions in the domain

Criterium: $abla \cdot V < 0$

Aimed for estimation for arrival time, strength

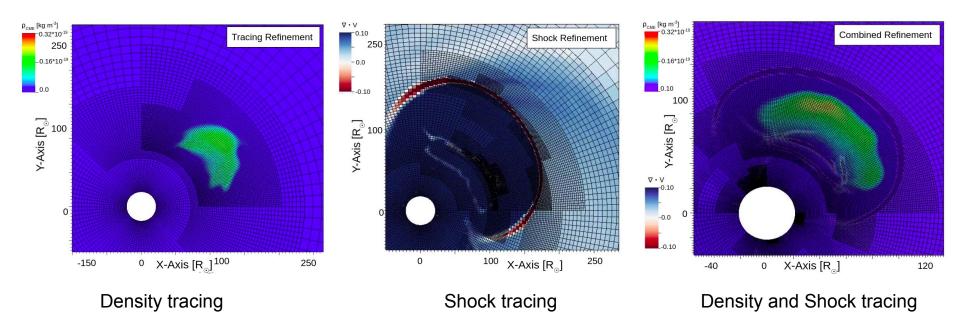


AMR Equidistant - Combined criterion

Refinement is applied when the CME or the shock is present in the domain

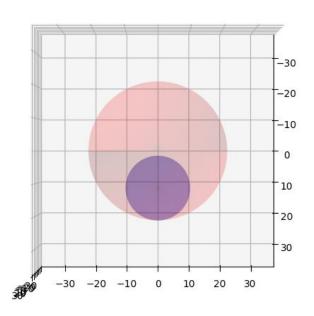
Criterium: $F_{TR} > 0 \& div(V) < 0$

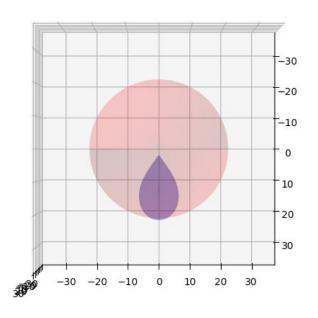
Aimed for full evolution



Advanced techniques: AMR + Grid Stretching

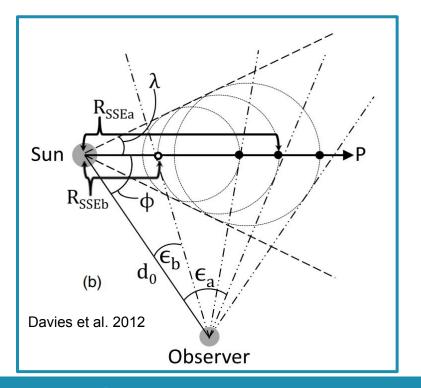
Baratashvili et al. 2022





Spheromak

Stretched Spheromak



Spheromak ⇒ Self-Similar evolution

Spheromak ⇒ Gibson & Low model (Gibson & Low model (Gibson & Low, 1998)

A realistic flux-rope model

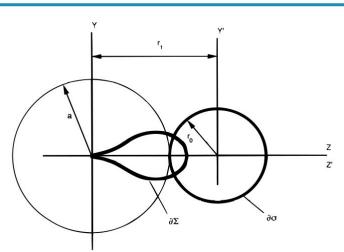
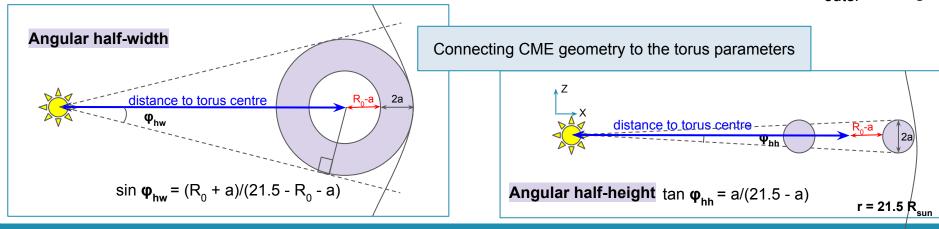
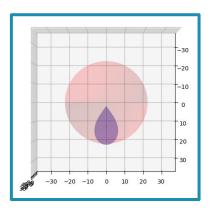
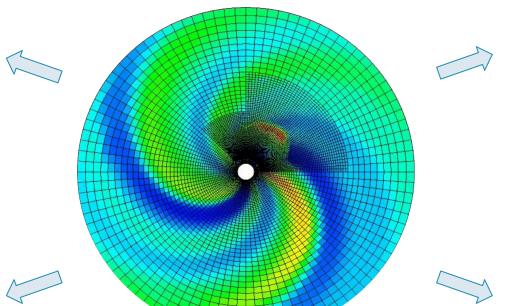


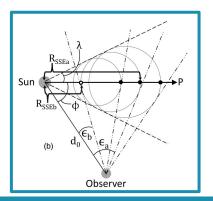
Fig. 5.—Limiting case $a=r_1-r_0$, where the leftmost point of the circle is mapped exactly onto the origin. The mathematical stretching transformation takes a circle $\partial \sigma$ that is located in the Y-Z plane, of radius r_0 , and displaced a distance r_1 from the origin, and maps it to the tear-shaped curve $\partial \Sigma$. This contraction "stretches" the space r>a radially inward, under the transformation $r\rightarrow r-a$ (any points r<a are collapsed onto the origin).

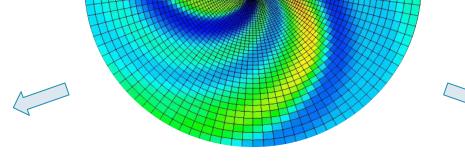

Spheromak

Inner radius: $R_{inner} = 2R_{\odot}$ Outer radius: $R_{outer} = 5R_{\odot}$









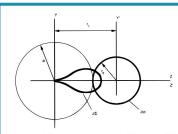
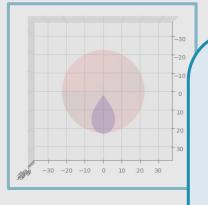


Fig. 5.—Limiting case $a=r_1-r_0$, where the leftmost point of the circle is mapped exactly onto the origin. The mathematical stretching transformation takes a circle $\partial \sigma$ that is located in the Y-Z plane, of radius r_0 , and displaced a distance r_1 from the origin, and maps it to the tearshaped curve $\partial \Sigma$. This contraction "stretches" the space r > a radially inward, under the transformation $r \rightarrow r - a$ (any points r < a are collapsed onto the origin).



Sun R_{SSEb} Φ $(b) d_0 \in b \in a$

Validation with different case studies



Fig. 5—Limiting case $a=r_1-r_0$, where the leftmost point of the circle is mapped exactly onto the origin. The mathematical stretching transformation takes a circle $\partial\sigma$ that is located in the Y-Z plane, of radius r_0 , and displaced a distance r_1 from the origin, and maps it to the tearshaped curve $\partial\Sigma$. This contraction "stretches" the space r>a a radially inward, under the transformation $r\rightarrow r-a$ (any points r< a are collapsed onto the origin,

Speed up

	Icarus (Middle) Equidistant	Icarus Stretched NO AMR	AMR 2	AMR 3	AMR 4
Wall-clock times	7h 44m	0h 8m	0h 15m	0h 35m	3h 40m

Simulations are performed on 1 node only (with 36 CPUs) on the Genius cluster at the Vlaams Supercomputing Centre.

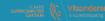
Middle equidistant in EUHFORIA ~ 18h

Speed up factors

	Icarus	EUHFORIA
AMR 3	13.2	30.8
AMR 4	2.1	4.9

We are going public!

First phase: maintained within MPI-AMRVAC repository ⇒ open-source and publicly available to everyone



We are going public!

- First phase: maintained within MPI-AMRVAC repository ⇒ open-source and publicly available to everyone
- Being integrated within VSWMC
 - Along with EUHFORIA heliospheric model
 - User-friendly GUI interface

We are going public!

- First phase: maintained within MPI-AMRVAC repository ⇒ open-source and publicly available to everyone
- Being integrated within VSWMC
 - Along with EUHFORIA heliospheric model
 - User-friendly GUI interface
- In chain with different coronal models
 - WSA
 - COCONUT

- Flexible Grid
 - Stretching
 - AMR
- Different numerical schemes + limiters available

- Flexible Grid
 - Stretching
 - o AMR
- Different numerical schemes + limiters available

Faster results

- Flexible Grid
 - Stretching
 - AMR
- Different numerical schemes + limiters available

Faster results

Saved computational resources

- Flexible Grid
 - Stretching
 - AMR
- Different numerical schemes + limiters available

Faster results

Saved computational resources

Access to more in-depth research!

Flexible Grid Stretc **AMR** Different Thank you! Access to Saved **Faster** computational more in-depth results research! resources

