Recent developments of the Wind-Predict model for space-weather applications

Barbara PERRI (AIM, France)

Collaborators: Allan Sacha BRUN, Antoine STRUGAREK (AIM, France) Victor RÉVILLE (IRAP, France) Stefaan POEDTS, Evangelia SAMARA, Andrea LANI, Andrey KOCHANOV (KU Leuven, Belgium)

Barbara PERRI

Space Weather Modelling Workshop

Darmstadt, Germany

01/03/2023

Space weather

Barbara PERRI

Space Weather Modelling Workshop

Darmstadt, Germany

01/03/2023

Barbara PERRI

Space Weather Modelling Workshop

Darmstadt, Germany

01/03/2023

 \rightarrow Space weather forecasting depends heavily on the modeling of the heliosphere

Barbara PERRI

Heliospheric structures

3

Heliospheric structures

[NASA]

Large-scale structures: Parker spiral + heliospheric current sheet (HCS)

Barbara PERRI

Space Weather Modelling Workshop

Darmstadt, Germany

01/03/2023

Heliospheric structures

2/

Large-scale structures: Parker spiral + heliospheric current sheet (HCS)

Barbara PERRI

[NASA]

Space Weather Modelling Workshop

[McComas+2003]

Solar wind

[Hundhausen 1972] [Carnevale+2022]

> High-Speed Streams (HSS) + Co-rotating Interacting Regions (CIRs)

> > Darmstadt, Germany

01/03/2023

VSWMC

3

VSWMC

Chain of data-driven heliospheric simulations from the solar surface to the Earth

3

VSWMC

Chain of data-driven heliospheric simulations from the solar surface to the Earth

[SDO/HMI]

 $1 R_{\odot}$

Barbara PERRI

3

VSWMC

Chain of data-driven heliospheric simulations from the solar surface to the Earth

[SDO/HMI]

 $1 R_{\odot}$

 $20 R_{\odot}$

3

VSWMC

Chain of data-driven heliospheric simulations from the solar surface to the Earth

3

VSWMC

Chain of data-driven heliospheric simulations from the solar surface to the Earth

VSWMC

Chain of data-driven heliospheric simulations from the solar surface to the Earth

The extrapolations from 1 to 20 solar radii are semi-empirical

- \rightarrow this is where most of the structures are created!
- \rightarrow we want to replace it with a more physical code (MHD) BUT still fast!

Barbara PERRI

Wind-Predict model (I)

Numerics :

- Based on the PLUTO code (Mignone+2007)
- Solves the set of ideal conservative MHD equations in spherical coordinates
- Finite-volume method with Riemann solver

Physics :

[Réville+2015a, Réville+2017, Perri+2018]

- WP: Polytropic wind model with $\gamma = 1.05$
- Initialization with a Parker solution
- Relaxation to reach stationary state

[Perri & Leitner+2022]

Barbara PERRI

Space Weather Modelling Workshop

Darmstadt, Germany

01/03/2023

Wind-Predict model (II)

2/

Possibility to extend up to 1 AU to compute the state of the inner heliosphere for key dates Example: first perihelion of Solar Orbiter (15/06/2020)

[https://tonione.github.io/windpredict.github.io/17062020.html]

Barbara PERRI

Space Weather Modelling Workshop

Darmstadt, Germany

01/03/2023

Wind-Predict in the VSWMC

3/

6

 \rightarrow

7

Wind-Predict in the VSWMC

3/

Coronal model successfully integrated in Phase 3

 \rightarrow Provides magnetic field, wind speed, temperature and density at 21.5 Rs

Alternative to EUHFORIA corona (WSA empirical model) along with MULTI-VP

 \rightarrow

7

Wind-Predict in the VSWMC

3/

Coronal model successfully integrated in Phase 3

 \rightarrow Provides magnetic field, wind speed, temperature and density at 21.5 Rs

Alternative to EUHFORIA corona (WSA empirical model) along with MULTI-VP

Introduction	Wind-Predict	3/ 6	Wind-Predict-AW	Perspectives	7
	Wind-Pro	edict	in the VSWN	мС	
Parametrize Wind-Pre	edict				1-2
Magnetogram Source	 Search Product Catalog Upload Product 				
Wind-Predict Computational Grid	 Low Resolution (64x32x Low Resolution (64x32x Low Resolution (64x32x Low Resolution (64x32x Medium Resolution (12x High Resolution (256x9x) 	x64, RAM, v x64, HPC, 1 x64 - runs ~ 8x64x128 - 6x192 - rur	very few time steps) - testing node, few time steps) - testing ~12 hours on 200 cores for quiet - runs ~25 hours on 400 cores fo ns ~50 hours on 900 cores for qu	Sun) r quiet Sun) iiet Sun)	
Temperature (*10^6 K)	1.5	-			

Initial temperature of the corona at the bottom boundary condition. The wind speed increases with temperature: the hotter the corona, the faster the wind will be at 21.5 Rs. Value range [1.0; 2.0]*10^6 K.

.

 \rightarrow

7

Wind-Predict in the VSWMC

3/

Coronal model successfully integrated in Phase 3

 \rightarrow Provides magnetic field, wind speed, temperature and density at 21.5 Rs

Alternative to EUHFORIA corona (WSA empirical model) along with MULTI-VP

Typical inputs so far:

Types of outputs provided so far:

Wind-Predict in the VSWMC

3/

Coronal model successfully integrated in Phase 3

 \rightarrow Provides magnetic field, wind speed, temperature and density at 21.5 Rs

Alternative to EUHFORIA corona (WSA empirical model) along with MULTI-VP

Barbara PERRI	Space Weather Modelling Workshop	Darmstadt, Germany	01/03/202
---------------	----------------------------------	--------------------	-----------

Wind-Predict in the VSWMC

3,

Coronal model successfully integrated in Phase 3

 \rightarrow Provides magnetic field, wind speed, temperature and density at 21.5 Rs

Alternative to EUHFORIA corona (WSA empirical model) along with MULTI-VP

2D: to check the wind configuration

Barbara PERRI	Space Weather Modelling Workshop	Darmstadt, Germany	01/03/2023
---------------	----------------------------------	--------------------	------------

Wind-Predict in the VSWMC

3,

Coronal model successfully integrated in Phase 3

 \rightarrow Provides magnetic field, wind speed, temperature and density at 21.5 Rs

Alternative to EUHFORIA corona (WSA empirical model) along with MULTI-VP

Barbara PERRI	Space Weather Modelling Workshop	Darmstadt, Germany	01/03/2023
---------------	----------------------------------	--------------------	------------

Coupling with EUHFORIA

4/

Coupling with EUHFORIA

4/

Coupling with EUHFORIA

4/

Coupling with EUHFORIA

4/

Numerical scaling

5/

6

Numerical scaling

5/

To be operational, tests of resolution:

Resolution	Minimum	Maximum
HighRes	9.2 days	23 days
NormalRes	21 hours	3 days
LowRes	6 hours	24 hours
CoarseRes	1.4 hours	3.5 hours

 \rightarrow Then interpolator to match the desired resolution

Barbara PERRI

Numerical scaling

5/

To be operational, tests of resolution:

Resolution	Minimum	Maximum
HighRes	9.2 days	23 days
NormalRes	21 hours	3 days
LowRes	6 hours	24 hours
CoarseRes	1.4 hours	3.5 hours

\rightarrow Then interpolator to match the desired resolution

Barbara PERRI

Space Weather Modelling Workshop

Darmstadt, Germany

01/03/2023

Numerical scaling

5/

To be operational, tests of resolution:

Resolution	Minimum	Maximum
HighRes	9.2 days	23 days
NormalRes	21 hours	3 days
LowRes	6 hours	24 hours
CoarseRes	1.4 hours	3.5 hours

Then interpolator to \rightarrow match the desired resolution

[Perri 2019]

Robustness of the code

6/

6

Robustness of the code

6/

To be operational, need to make the code robust for all synoptic maps \rightarrow Empirical criterion of $\frac{v_A}{v_{esc}} < 3$

Robustness of the code

6/

To be operational, need to make the code robust for all synoptic maps Empirical criterion of $\frac{v_A}{--} < 3$ \rightarrow v_{esc}

Original map (adapt40311 03k012 202109210000 i00025600n1.fts)

Darmstadt, Germany

Robustness of the code

6/

To be operational, need to make the code robust for all synoptic maps \rightarrow Empirical criterion of $\frac{v_A}{v_{esc}} < 3$

Robustness of the code

6/

To be operational, need to make the code robust for all synoptic maps \rightarrow Empirical criterion of $\frac{v_A}{v_{esc}} < 3$

Original map (adapt40311 03k012 202109210000 i00025600n1.fts)

Longitude

Robustness of the code

6/

To be operational, need to make the code robust for all synoptic maps \rightarrow Empirical criterion of $\frac{v_A}{v_{esc}} < 3$

Inclusion of source terms

The main limitation of the polytropic assumption is that you do not get a bimodal wind

 \rightarrow To get a realistic coronal heating, you need to add source terms:

Source term: [Ré $Q = Q_h + Q_w - Q_c - Q_r$

[Réville+2020]

Ad hoc heating term:

$$Q_h = F_h / H\left(\frac{R_{\odot}}{r}\right)^2 \exp\left(-\frac{r - R_{\odot}}{H}\right)$$

Turbulence term: $Q_{w}^{\pm} = \frac{\rho}{8} \frac{\left|z^{\pm}\right|^{2}}{\lambda} \left(R\left|z^{\pm}\right| + \left|z^{\mp}\right|\right),$ $R = 0.1, \lambda = \frac{\lambda_{\odot}}{\sqrt{B}}, \ \delta v_{\odot} = \frac{z_{\odot}^{\pm}}{2}$ Radiation term: $Q_r = n^2 \Lambda(T)$

Thermal conduction:

$$Q_{c} = \nabla \cdot \left(\alpha q_{s} + (1 - \alpha)q_{p}\right),$$

$$q_{s} = -\kappa_{0}T^{\frac{5}{2}}\nabla T, \ q_{p} = \frac{3}{2}p_{th}v_{e},$$

$$\alpha = \frac{1}{1 + \frac{\left(r - R_{\odot}\right)^{4}}{\left(r_{coll} - R_{\odot}\right)^{4}}}, r_{coll} = 5R_{\odot}$$

Wind-Predict-AW model

Wind-Predict-AW model

Validated using in-situ data (PSP first perihelion on 06/11/18)

12

Wind-Predict-AW model

Validated using in-situ data (PSP first perihelion on 06/11/18)

Barbara PERRI

2.0

1.5

-2 -1

-0.5

-1.0

-1.0 -0.5 0.0 0.5 1.0 Ba

Space Weather Modelling Workshop

i

0 Be - 0.5

- 0.0

-0.5

-1.0

-2

-1 0 1 2 Be -0.25

-0.50

-0.75

-1.00

13

ISWAT H1-01 validation

13

ISWAT H1-01 validation

ISWAT = International Space Weather Action Team H1-01 team dedicated to the validation of the ambient solar wind (CR2075-6-7) Initial validation : structures OK, but HSSs underestimated

3,

13

ISWAT H1-01 validation

ISWAT = International Space Weather Action Team

H1-01 team dedicated to the validation of the ambient solar wind (CR2075-6-7)

Initial validation : structures OK, but HSSs underestimated

CR 2075, 2076 & 2077

Impact of the transition region

14

4,

Impact of the transition region

Addition of a transition region \rightarrow coronal holes better captured in speed!

ISWAT validation (II)

Barbara PERRISpace Weather Modelling WorkshopDarmstadt, Germany01/03/2023

1,

Future developments

WP-AW-hyb:

Alfvén wave heating without thermal conduction and radiative losses

realistic heating + fast code! \rightarrow

Can indeed recover CH acceleration good sign for HSS \rightarrow

Barbara PERRI

Space Weather Modelling Workshop

525 500

475

450 425

400

Future developments

 \rightarrow \rightarrow

CMEs

[Regnault+2023]

CME initialization with a Titov-Desmoulins flux-rope

[Linan+2023] (to be submitted)

Barbara PERRI

Space Weather Modelling Workshop

Open challenges: Input map

Open challenges: Input map

- The choice of the initial map has a strong impact on the final coronal solution
 - \rightarrow need for standard input

Open challenges: Input map

- The choice of the initial map has a strong impact on the final coronal solution
 - \rightarrow need for standard input

The current maps lead to underestimating the magnetic flux at Earth → how to solve the open flux problem?

Open challenges: Standard validation

Open challenges: Standard validation

Still no stand-alone validation for coronal models in the VSWMC

- \rightarrow We cannot evaluate properly why a forecast has failed!
- → Collaboration with KU Leuven and IAS to develop new validation frameworks
 → Following the recommendations from Wagner+2022 and Badman+2023

4,

Open challenges: Standard validation

Still no stand-alone validation for coronal models in the VSWMC

- \rightarrow We cannot evaluate properly why a forecast has failed!
- → Collaboration with KU Leuven and IAS to develop new validation frameworks
 → Following the recommendations from Wagner+2022 and Badman+2023

4,

Open challenges: Standard validation

Still no stand-alone validation for coronal models in the VSWMC

- \rightarrow We cannot evaluate properly why a forecast has failed!
- Collaboration with KU Leuven and IAS to develop new validation frameworks
 Following the recommendations from Wagner+2022 and Badman+2023

Barbara PERRI

Open challenges: Maximum of activity

Open challenges: Maximum of activity

Brun, Parenti, Pinto, Strugarek

As the maximum of solar cycle 25 is approaching, need for models that can change quickly (time-dependent boundary condition, data assimilation...)

Open challenges: Maximum of activity

Brun, Parenti, Pinto, Strugarek

As the maximum of solar cycle 25 is approaching, need for models that can change quickly (time-dependent boundary condition, data assimilation...)

 Active region are becoming more and more important → how to couple global coronal models with local eruption models?

Open challenges: Maximum of activity

Brun, Parenti, Pinto, Strugarek

As the maximum of solar cycle 25 is approaching, need for models that can change quickly (time-dependent boundary condition, data assimilation...)

 Active region are becoming more and more important → how to couple global coronal models with local eruption models?

Thank you for your attention!

Barbara PERRI

Space Weather Modelling Workshop

Darmstadt, Germany

01/03/2023