

COCONUT for global coronal modelling

Brchnelova Michaela, Poedts Stefaan Kuzma B., Perri B., Baratashvili T., Linan L., Lani A.

michaela.brchnelova@kuleuven.be

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023, Darmstadt

 \checkmark

V

~

Please note that all ESA-SWE Services are under review/construction

Expert Service Centres / ESC Heliospheric Weather / kul-cmpa-federated

SPACE WEATHER AT ESA SERVICE DOMAINS

CURRENT SPACE WEATHER

EXPERT SERVICE CENTRES

ESC Solar Weather

ESC Heliospheric Weather

ESC Space Radiation

ESC Ionospheric Weather

ESC Geomagnetic Conditions

OTHER RESOURCES

CONTACT

REQUEST FOR REGISTRATION (*)

Federated products from the Centre for mathematical Plasma-Astrophysics (KUL)

thead opace freacher fromening ocher

I HISTORY

+ NEW RUN

Welcome to the VSWMC

The Virtual Space Weather Modelling Centre (VSWMC) is a full scale, open end-to-end (meaning from the Sun to the Earth) space weather modelling, enabling to combine (couple) various space weather models in an integrated tool, with the models located either locally or geographically distributed. Hence, the VSWMC brings together models for different components of the space weather in an integrated environment that enables to run them and to couple them.

COOLFluiD CFD framework (Lani & Quintino 2003)

- C++ based multiphysics platform for fluid dynamics simulations, heavily parallelized
- COCONUT: ideal MHD + gravity
- Different than most state-of-art solvers:
 - Unstructured grid
 - \rightarrow enables advanced grid refinement techniques
 - Implicit scheme
 - \rightarrow CFL of up to several thousands
 - \rightarrow fast convergence

https://github.com/andrealani/COOLFluiD/wiki

contact: andrea.lani@kuleuven.be

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: current state (verification)

Dipole

Quadrupole

[Perri & Leitner et al., 2022]

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

Centre for mathematical Plasma Astrophysics

COCONUT: current state (results)

[Kuzma et al., 2023]

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: current state (performance)

- up to 35x speedup for data-driven simulations compared to state-of-art

Code	Case	Number of elements	Number of processors	Highest CFL	Iterations	Time (minutes)
COCONUT	Dipole	332 800	84	5000	137	5.6
Wind-Predict	Dipole	320 000	84	0.3	80445	15.0
COCONUT	Quadrupole	332 800	84	300	290	11.9
Wind-Predict	Quadrupole	320 000	84	0.3	94310	17.0
COCONUT	GONG ($\ell_{\rm max} = 15$)	$1.9 10^6$	196	2000	1397	87.5
Wind-Predict	GONG ($\ell_{\rm max} = 15$)	$2.0 10^6$	196	0.3	163768	960
COCONUT	GONG ($\ell_{\rm max} = 30$)	$1.9 10^6$	196	2000	1528	86.8
Wind-Predict	GONG ($\ell_{\rm max} = 30$)	$2.0 10^6$	196	0.3	607988	3040

[Perri & Leitner et al., 2022]

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: formulation

- Primitive variables: ρ, V_x, V_y, V_z, B_x, B_y, B_z, **φ**, P -
- Ideal MHD equations: -

$$\frac{d\rho}{dt} + \nabla \cdot (\rho \vec{V}) = 0,$$

ß magnetic field v velocity density ρ time internal energy ğ gravity Ρ pressure

t

3

$$\frac{d(\rho\vec{V})}{dt} + \nabla \cdot \left(\rho\vec{V}\otimes\vec{V} + \mathbf{I}\left(P + \frac{\vec{B}^2}{8\pi}\right) - \frac{\vec{B}\otimes\vec{B}}{4\pi}\right) = \rho\vec{g},$$
$$\frac{1}{c}\frac{d\vec{B}}{dt} + \nabla \times \left(-\frac{\vec{V}\times\vec{B}}{c}\right) = \vec{0},$$

$$\frac{d}{dt}\left(\rho\frac{\vec{V}^2}{2} + \rho\mathcal{E} + \frac{\vec{B}^2}{8\pi}\right) + \nabla\cdot\left[\left(\rho\frac{\vec{V}^2}{2} + \rho\mathcal{E} + P\right)\vec{V} - \frac{1}{4\pi}(\vec{V}\times\vec{B})\times\vec{B}\right] = \rho\vec{g}\cdot\vec{V}.$$

. .

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: formulation

- Primitive variables ρ, Vx, Vy, Vz, Bx, By, Bz, φ, P _
- Ideal MHD equations: -

$$rac{d
ho}{dt} +
abla \cdot (
ho ec V) = 0,$$

 $\frac{d(\rho\vec{V})}{dt} + \nabla \cdot \left(\rho\vec{V}\otimes\vec{V} + \mathbf{I}\left(P + \frac{\vec{B}^2}{2\pi}\right) - \frac{\vec{B}\otimes\vec{B}}{4}\right) = \rho\vec{g},$

BC prescription

₿ ₽ magnetic field velocity density ρ time t internal energy 3 ğ gravity Ρ pressure

$$\frac{1}{c}\frac{d\vec{B}}{dt} + \nabla \times \left(-\frac{\vec{V}\times\vec{B}}{c}\right) = \vec{0},$$

$$\frac{1}{c}\frac{d\vec{B}}{dt} + \nabla \times \left(-\frac{\vec{V}\times\vec{B}}{c}\right) = \vec{0},$$

$$\frac{1}{c}\frac{d\vec{V}}{dt} + \rho\mathcal{E} + \frac{\vec{B}^2}{8\pi} + \nabla \cdot \left[\left(\rho\frac{\vec{V}^2}{2} + \rho\mathcal{E} + P\right)\vec{V} - \frac{1}{4\pi}(\vec{V}\times\vec{B})\times\vec{B}\right] = \rho$$

$$\frac{d}{dt}\left(\rho\frac{\vec{V}^2}{2} + \rho\mathcal{E} + \frac{\vec{B}^2}{8\pi}\right) + \nabla\cdot\left[\left(\rho\frac{\vec{V}^2}{2} + \rho\mathcal{E} + P\right)\vec{V} - \frac{1}{4\pi}(\vec{V}\times\vec{B})\times\vec{B}\right] = \rho\vec{g}\cdot\vec{V}.$$

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: BC prescriptions

- we extent to > 21 solar radii and assume
 "lower corona" at the inner boundary
 - this will be changed in the future iteration in which the transition region will be included
- we prescribe a magnetic field on the surface based on the observed solar magnetograms

~ 1 solar radius, ~ 1.67e-13 kg/m3, ~ 1.5e6 K

COCONUT: formulation

- Primitive variables: ρ, Vx, Vy, Vz, Bx, By, Bz, φ, P
- Ideal MHD equations:

discretisation, scheme, limiting $\frac{d\rho}{dt} + \nabla \cdot (\rho \vec{V}) = 0,$

 $\frac{d(\rho\vec{V})}{dt} + \nabla \cdot \left(\rho\vec{V} \otimes \vec{V} + \mathbf{I}\left(P + \frac{\vec{B}^2}{8\pi}\right) - \frac{\vec{B} \otimes \vec{B}}{4\pi}\right) = \rho\vec{g},$

$$\begin{array}{ccc} B & magnetic field \\ \vec{V} & velocity \\ \rho & density \\ t & time \\ \epsilon & internal energy \\ \vec{g} & gravity \\ P & pressure \end{array}$$

C 1 1

$$\frac{d}{dt}\left(\rho\frac{\vec{V}^2}{2} + \rho\mathcal{E} + \frac{\vec{B}^2}{8\pi}\right) + \nabla \cdot \left[\left(\rho\frac{\vec{V}^2}{2} + \rho\mathcal{E} + P\right)\vec{V} - \frac{1}{4\pi}(\vec{V}\times\vec{B})\times\vec{B}\right] = \rho\vec{g}\cdot\vec{V}.$$

 $\frac{1}{c}\frac{d\vec{B}}{dt} + \nabla \times \left(-\frac{\vec{V} \times \vec{B}}{c}\right) = \vec{0},$

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: discretisation

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

Centre for mathematical Plasma Astrophysics

COCONUT: discretisation

Azimuthal velocity component

Poloidal velocity component

[Brchnelova et al. 2022]

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: discretisation

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

Centre for mathematical Plasma Astrophysics

COCONUT: formulation

- Primitive variables: ρ, Vx, Vy, Vz, Bx, By, Bz, φ, P
- Ideal MHD equations:

$$\frac{d\rho}{dt} + \nabla \cdot (\rho \vec{V}) = 0, \quad \text{magnetic map type}$$

$$\frac{d(\rho \vec{V})}{dt} + \nabla \cdot \left(\rho \vec{V} \otimes \vec{V} + \mathbf{I} \left(P + \frac{\vec{B}^2}{8\pi}\right) - \frac{\vec{B} \otimes \vec{B}}{4\pi}\right) = \rho \vec{g},$$

$$\frac{1}{c} \frac{d\vec{B}}{dt} + \nabla \times \left(-\frac{\vec{V} \times \vec{B}}{c}\right) = \vec{0},$$

Bmagnetic fieldVvelocityρdensityttimeεinternal energyggravityPpressure

$$\frac{d}{dt}\left(\rho\frac{\vec{V}^2}{2} + \rho\mathcal{E} + \frac{\vec{B}^2}{8\pi}\right) + \nabla \cdot \left[\left(\rho\frac{\vec{V}^2}{2} + \rho\mathcal{E} + P\right)\vec{V} - \frac{1}{4\pi}(\vec{V}\times\vec{B})\times\vec{B}\right] = \rho\vec{g}\cdot\vec{V}.$$

•

.

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: magnetic maps

 Features vary depending on the type of the magnetogram used: barbara.perri@kuleuven.be

[Perri et al. 2023]

Streamers comparison with WL

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: formulation

- Primitive variables: ρ, V_x, V_y, V_z, B_x, B_y, B_z, φ, P -
- Ideal MHD equations: -

$$\frac{d\rho}{dt} + \nabla \cdot (\rho \vec{V}) = 0,$$

 $\rightarrow \sim$

.

Ŗ	magnetic field
v	velocity
ρ	density
t	time
3	internal energy
ğ	gravity
Р	pressure

$$\frac{d(\rho\vec{V})}{dt} + \nabla \cdot \left(\rho\vec{V}\otimes\vec{V} + \mathbf{I}\left(P + \frac{\vec{B}^2}{8\pi}\right) - \frac{\vec{B}\otimes\vec{B}}{4\pi}\right) = \rho\vec{g},$$
$$\frac{1}{c}\frac{d\vec{B}}{dt} + \nabla \times \left(-\frac{\vec{V}\times\vec{B}}{c}\right) = \vec{0},$$

heating, radiation, conduction

$$\frac{d}{dt}\left(\rho\frac{\vec{V}^2}{2} + \rho\mathcal{E} + \frac{\vec{B}^2}{8\pi}\right) + \nabla \cdot \left[\left(\rho\frac{\vec{V}^2}{2} + \rho\mathcal{E} + P\right)\vec{V} - \frac{1}{4\pi}(\vec{V}\times\vec{B})\times\vec{B}\right] = \rho\vec{g}\cdot\vec{V} + ?$$

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

- Additional source terms:
 - heating

- radiation

- conductivity

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

- Additional source terms:
 - heating (Reville et al. 2020, Downs et al. 2010)

$$Q_{h} = H B| \qquad Q_{h} = H_{0} \exp\left[-(r - R_{\odot})/\lambda\right] \qquad Q_{h} = F_{h}/H\left(\frac{R_{\odot}}{r}\right)^{2} \exp\left(-\frac{r - R_{\odot}}{H}\right)$$
$$H_{ch} = H_{0} \cdot |\mathbf{B}| \cdot e^{-\frac{r - R_{s}}{\lambda}}$$

- radiation

- conductivity

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

- Additional source terms:
 - heating (Reville et al. 2020, Downs et al. 2010)

$$Q_h = H|B| \qquad Q_h = H_0 \exp\left[-(r - R_{\odot})/\lambda\right] \qquad Q_h = F_h / H\left(\frac{R_{\odot}}{r}\right)^2 \exp\left(-\frac{r - R_{\odot}}{H}\right)$$
$$H_{ch} = H_0 \cdot |\mathbf{B}| \cdot e^{-\frac{r - R_s}{\lambda}}$$

- radiation (Rosner et al. 1978)

 $Q_r = -n_e n_p \Lambda(T)$

- conductivity

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

- Additional source terms:
 - heating (Reville et al. 2020, Downs et al. 2010)

$$Q_h = H|B| \qquad Q_h = H_0 \exp\left[-(r - R_{\odot})/\lambda\right] \qquad Q_h = F_h / H\left(\frac{R_{\odot}}{r}\right)^2 \exp\left(-\frac{r - R_{\odot}}{H}\right)$$
$$H_{ch} = H_0 \cdot |\mathbf{B}| \cdot e^{-\frac{r - R_s}{\lambda}}$$

- radiation (Rosner et al. 1978)

 $Q_r = -n_e n_p \Lambda(T).$

- conductivity
- less than 10Rsun:

 $\mathbf{q} = -\boldsymbol{\kappa}_{\parallel} \mathbf{\hat{b}} \mathbf{\hat{b}} \cdot \nabla T$

 $\alpha = M_e^{-0.2112} \qquad M_e \le 0.0249$ more than 10Rsun: $\alpha = 0.436 M_e^{-0.436} \qquad 0.0249 < M_e \le 0.3146$ $q = \alpha n_e k T v \qquad \alpha = 0.035 M_e^{-2.617} \qquad M_e > 0.3146$

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

Centre for mathematical Plasma Astrophysics

- Radiation, conductivity and heating terms: tinatin.baratashvili@kuleuven.be

polytropic

heating + radiative losses

heating + radiation + conduction

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: formulation

- Primitive variables: ρ, Vx, Vy, Vz, Bx, By, Bz, φ, P
- Ideal MHD equations:

$$rac{d
ho}{dt} +
abla \cdot (
ho ec V) = 0,$$

time-dependent evolution

$$\begin{aligned} \frac{d(\rho\vec{V})}{dt} + \nabla \cdot \left(\rho\vec{V}\otimes\vec{V} + \mathbf{I}\left(P + \frac{\vec{B}^2}{8\pi}\right) - \frac{\vec{B}\otimes\vec{B}}{4\pi}\right) &= \rho\vec{g}, \\ \frac{1}{c}\frac{d\vec{B}}{dt} + \nabla \times \left(-\frac{\vec{V}\times\vec{B}}{c}\right) &= \vec{0}, \end{aligned}$$

3	magnetic field
V	velocity
0	density
	time
Ξ	internal energy
<u></u>	gravity
D C	pressure

$$\frac{d}{dt}\left(\rho\frac{\vec{V}^2}{2} + \rho\mathcal{E} + \frac{\vec{B}^2}{8\pi}\right) + \nabla\cdot\left[\left(\rho\frac{\vec{V}^2}{2} + \rho\mathcal{E} + P\right)\vec{V} - \frac{1}{4\pi}(\vec{V}\times\vec{B})\times\vec{B}\right] = \rho\vec{g}\cdot\vec{V}$$

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: time dependence for flux rope insertion

- To simulate coronal mass ejections
- Flux rope insertion and propagation:

luis.linan@kuleuven.be

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: validation

- Primitive variables: ρ, Vx, Vy, Vz, Bx, By, Bz, φ, P
- Ideal MHD equations:

$$\begin{split} \frac{d\rho}{dt} + \nabla \cdot \left(\rho \vec{V}\right) &= 0, \\ \frac{d(\rho \vec{V})}{dt} + \nabla \cdot \left(\rho \vec{V} \otimes \vec{V} + \mathbf{I} \left(P + \frac{\vec{B}^2}{8\pi}\right) - \frac{\vec{B} \otimes \vec{B}}{4\pi}\right) &= \rho \vec{g}, \\ \frac{1}{c} \frac{d\vec{B}}{dt} + \nabla \times \left(-\frac{\vec{V} \times \vec{B}}{c}\right) &= \vec{0}, \\ \frac{d}{dt} \left(\rho \frac{\vec{V}^2}{2} + \rho \mathcal{E} + \frac{\vec{B}^2}{8\pi}\right) + \nabla \cdot \left[\left(\rho \frac{\vec{V}^2}{2} + \rho \mathcal{E} + P\right) \vec{V} - \frac{1}{4\pi} (\vec{V} \times \vec{B}) \times \vec{B}\right] = \rho \vec{g} \cdot \vec{V}. \end{split}$$

B	magnetic field
V	velocity
ρ	density
t	time
3	internal energy
đ	gravity
Р	pressure

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: validation

[Kuzma et al., 2023]

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: validation

1.5 1.0

0.5

0.0

-0.5

-1.0

-1.5

tomography

-100

160

140

120 -

100

80

60 -

40

20

-150

- B-field comparison:
 - relies on very approximate physics
 - mostly qualitative -
- WLI: not so easy
- Limited to the regions very close to the Sun (2-3 solar radii)
 - \rightarrow use of tomography

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

Centre for mathematical **Plasma Astrophysics**

COCONUT: extension to lower layers

- eventual goal to extend to the transition region and chromosphere
 - there, the effects of neutrals must be considered
 - \rightarrow development of a multi-fluid ion-neutral version

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

COCONUT: conclusions

- A promising coronal model which agrees generally well with observations
- Robust & fast enough for space weather forecasting
- Ongoing development:
 - CME (flux rope) time-dependent modelling
 - Inclusion of more realistic physics
 - Extension to multi-fluid modelling
 - Improvement of validation methods

- Open source!

ESA Space Weather Modelling Workshop, February 28 - March 2, 2023

Thank you for your attention!

michaela.brchnelova@kuleuven.be

