

Lessons learned for SDRAM testing

QEC Final Presentation Days 2023

|*|

Said Bounasser

26/06/2023

ESA UNCLASSIFIED – For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

Context

IPN 506: "Stuck bits in SDRAMs observed in-flight on several spacecraft", raised in March 2018.

Stuck-bits (SB) and Intermittent Stuck-bits (ISB) have been detected in orbit in several missions. Impacted memory: ELPIDA EDS5104ABTA.

Investigation of radiation effects on the ISSI SDRAM. Parts were provided from two lots by 3D+.

Outcome:

- Testing guidelines.
- SEE (SB/SEU/SEFI) sensitivity screening of the ISSI SDRAM.

Functional block diagram

Die example of a Samsung SDRAM

Stuck-bit, SEU/MCU/MBU, SEFI detection can be all implemented in the same test routine.

DRAM Retention Time (RT)

Abstraction level vs technology information

Problem: Different technologies, proprietary information. How to construct an efficient testing strategy independently of the DRAM tested.

-> SB rate for a given mission.

-> Will my EDAC be strong enough?

Trench structure capacitor (IBM)

Stacked structure capacitor (Samsung)

💻 🔜 📕 🚍 💳 🛶 💵 🔚 🔚 🔜 📲 🚟 📥 🚳 🍉 📲 🚼 🖬 📾 🔤 🔤 🛊 🔸 The European space agency

What factors influence the Retention Time - Reliability

1) Temperature

Non exhaustive list of parameters.

- When temperature rises, SB count will rise too.
- -> Importance to test at your operating temperature.
- 2) Manufacturing process
 - Margin to the 64ms threshold can be of a few hundreds of ms to few seconds.
 - -> Importance of pre-screening parts.
- 3) Inter-cell interference
 - A bit ability to store its information is by its bit's content <u>and</u> neighbouring write/read operation.
 - -> Importance of testing different pattern, search for the worst case pattern.
- 4) Radiation
 - TID/Proton/Heavy-Ion are all found to create stuck-bits. They are observed in space and in ground experiment.

Dynamic sliced algorithm using a PRBS pattern Beam On

Error classification procedure - Beam ON

- SEFI_TH = 50
- Each time errors are recorded in a slice, a recovery procedure is applied to discriminate events.
- If a given bit, is recorded 2 times or more in error during a run, or later found stuck, it is removed from the SEU cross-section and labeled as stuck-bits.
- SEFI recovery procedure is based on the JPL classification.

SB characterization procedure – Beam off

→ THE EUROPEAN SPACE AGENCY

VRT and ISB characterization procedure – Beam off

10

esa

Pre-Irradiation characterization

Lot_DUT

→ THE EUROPEAN SPACE AGENCY

TID characterization

Lot_DUT	Dose Rate [krad/h]	TID [krad _(SI)]	Bias	
2_1		53		
2_10	210	35	ON	
2_11		35		

TID created Stuck-Bit

→ THE EUROPEAN SPACE AGENCY

SB can't be created by TID.

- 1 weak cell was present in the DUT 2_1.
- Its RT value was divided by 2 each ${\sim}20 krad.$
- After 40krad it couldn't hold its value after 64ms.
- This specific bit was only sensitive to the pattern 0xA5, it was fine for 0x5A, 0x00 and 0x11.

-> Only 1 bit out of 3 * 512MBits SDRAM But there was also only 1 weak cell

Proton SEE characterization

Lot_DUT - TID	Flux [p/cm2.s]	Fluence [p/cm2]	Accumulated Fluence [p/cm2]	SB_A	SEU_0	SB_B	SEU= SEU_0 - SB_B	35 30	Lot 2 DUT 3 Lot 2 DUT 11 - 35Krad TID Lot 1 DUT 7	Lot 2 Lot 1 Lot 1	DUT 10 - 35Krad T DUT 2 DUT 9		
	1×10 ⁸	5×10 ⁹	5×10 ⁹	0	2	2	0	ua 25	Lot 2 DUI 1 - 53Krad IID	Lot 2	DUT 19		
	5×10 ⁷	5×10 ⁹	1×10 ¹⁰	0	2	0	2	. ∩ e		E=200MeV			
2.3	5×10 ⁷	1×10 ¹⁰	2×10 ¹⁰	0	1	0	1			σ _{seu} =2.9×1	.0 ⁻¹⁹ cm ² /bit		
	5×10 ⁷	1×10 ¹⁰	3×10 ¹⁰	0	0	0	0	ate					
	1×10 ⁸	7×10 ¹⁰	1×10 ¹¹	3	5	2	3	un la	E=200Me	V			
	2×10 ⁸	1×10 ¹¹	2×10 ¹¹	96	43	19	24	l 10	$ \sigma_{SEU} = 2$	5×10 ⁻¹⁹ cm ² /bit	and a second sec		
	5×10 ⁷	1×10 ¹⁰	1×10 ¹⁰	0	0	0	0	AC AC	E=200MeV			\rightarrow /	
2_10 - 35krad	2×10 ⁸	1×10 ¹¹	1.1×10 ¹¹	18	13	6	7	5	$ \sigma_{SEU} = 2.6 \times 10^{-19} \text{ cm}^2/\text{bit}$		E AFONA W	\cup	
	2×10 ⁸	2×10 ¹¹	2.1×10 ¹¹	44	27	11	16				E=150IVIEV	20 2 /1- :+	
	5×10 ⁷	1×10 ¹⁰	1×10 ¹⁰	0	1	0	1	0			$ \sigma_{SEU} = 4 \times 10^{-1}$	²⁰ cm ² /bit	
2_11 - 35krad	2×10 ⁸	1×10 ¹¹	1.1×10 ¹¹	2	4	0	4		1.0E+10	1.1E+	11	2.1E+11	
	2×10 ⁸	2×10 ¹¹	2.1×10 ¹¹	1	4	1	3		Accumula	ted Fluence [p/cm ²]			
	5×10 ⁷	1×10 ¹⁰	1×10 ¹⁰	0	0	0	0	SE	FI:		-		
1_2	2×10 ⁸	1×10 ¹¹	1.1×10 ¹¹	25	27	20	7	1 /			Check for Stuck-	Bit	
	2×10 ⁸	2×10 ¹¹	2.1×10 ¹¹	11	39	34	5		A-SEFI				
	5×10 ⁷	1×10 ¹⁰	1×10 ¹⁰	1	1	0	1	5 E	B-SEFI		CP	D	
1_7	2×10 ⁸	1×10 ¹¹	1.1×10 ¹¹	35	18	11	7			SD_A	50_	-₽	
	2×10 ⁸	2×10 ¹¹	2.1×10 ¹¹	130	17	11	6				Detect	ed as SB	
	5×10 ⁷	1×10 ¹⁰	1×10 ¹⁰	0	0	0	0	N	o difference	occurenc	e≥2 orlS	SB post	
1_9	2×10 ⁸	1×10 ¹¹	1.1×10 ¹¹	13	14	5	9				charac	terisation	
	2×10 ⁸	2×10 ¹¹	2.1×10 ¹¹	46	18	14	4	bet	ween pristine				
2_1 - 53krad	9×10 ⁷	1×10 ¹¹	1.1×10 ¹¹	2	2	1	1	de'	evice and TID				
2_19	1×10 ⁸	1×10 ¹¹	1.1×10 ¹¹	0	9	4	5	nr	a-irradiated		T		
2_13	2×10 ⁸	1×10 ¹¹	1.1×10 ¹¹	3	11	5	6				Stuck-Bit		

+

→ THE EUROPEAN SPACE AGENCY

*

Proton SEE event timeline

Burst of events, with a mix of detected SB and SEU.

Proton SB cross-section and annealing

- SB cross-section is flat along the accumulated fluence.
- Higher variability at low accumulated fluence due to a lower amount of SB created.
- Annealing measurement after 1, 90 and 210 days (unbiased at ambiant temperature) have been recorded.
- SB created are persistent over time.
- Not much variation from lot to lot.

Proton induced ISB

Heavy-Ion SEE test

18

eesa

Stuck-Bit cross-Section and annealing

SB and ISB measurement for DUT 1_6

Annealing Period [Day]

- 1) Pre Characterization, search for the weakest cell. Temperature measurement.
- 2) In situ measurement under irradiation, check for SEU/SEFI and SB.
- 3) Rapid first post characterization, search for stuck-bits using static patterns and RT_{TH} ranging from 16ms to 16s. In between runs.
- 4) Long term post characterization, annealing effect and ISB 24h measurement. Temperature measurement.

Key take aways

- Proton and Heavy-Ion are a must for SB testing. TID test must be performed if weak cell with low margin regards to the 64ms threshold are present in the device, or high operating temperature.
- Short and long-term measurements are preferred to evaluate annealing effects and compute SB for short and long terms.
- ISB measurement is preferred for a more precise extraction of SB count.
- Do stuck-bits measurement at your operating temperature as it plays a major role in the SB count.
- Test the whole memory under beam to catch as much as possible of SEFIs and with a dynamic PRBS pattern.
- Create a unique list of SB, detected with different patterns. Test two patterns at minimum. Remember that a given bit cell is sensitive with a combination of its written content and in the neighbouring cells.

→ THE EUROPEAN SPACE AGENCY

Counter measure for Stuck-Bits

- EDAC implementation but it can be defeated for a SB + 1 SEU in the same word for a SECDED.
- Use a higher refresh rate. In absence of radiation degradation, the designer can decide to use a much lower refresh rate to save power, but if in presence of SB, one should increase the refresh rate in the faulty row.
- Bit/Row repairs mechanism (remapping the logical bit/row address that points to the faulty bit/row to a spare one).

In-flight data vs ground testing

"Experimental characterization and In-flight observation of weakened cell in SDRAM", Anne Samaras, 2015

More results were presented at NSREC and RADECS 2020

