Estimation of Proton induced Single-Event rate in very-deep submicron Technologies

Maximilien GLORIEUX

Laurent ARTOLA

Thierry BONNOIT

Thomas LANGE

Remi GAILLARD

Romain REY

Christian POIVEY

29 June 2023

ONERA

THE FRENCH AEROSPACE LAB

Project Overview

- Main objectives:
 - Definition of a SEE test procedure for Low Energy Protons
 - Meaningful
 - Reproductible
 - Definition of a method to estimate in-flight SEE-rate induced by LEP
 - Accurate
 - Reliable
- Constraints:
 - 2 years project
 - 4 major tasks:

State of the Art Review

- [Dodds] Proposed to use degraded proton beam to reproduce orbital low energy proton spectrum, behind a shielding
 - Mainly focused on SOI devices
- [Guillermin] Proposed to sweep low-energy proton angle of incidence in order to define a sensitive layer to PDI
 - Some arbitrary hypothesis
- [IROC] Proposed to fit LEP test result to 2nd order polynomial and perform convolutional product with orbital flux
 - Angle of incidence is not considered

[Dodds] N. A. Dodds "The Contribution of Low-Energy Protons to the Total On-Orbit SEU Rate," *IEEE TNS* 2015. [Guillermin] J. Guillermin, "Worst-Case Proton Contribution to the Direct Ionization SEU Rate," in *2017 RADECS* [IROC] Error Rate Estimation in JUICE Mission Environment", ESA Study Report, IROC, 2018

Guillermin

29 June 2023

Estimation of proton induced single event rate in very deep submicron technologies

Proposed Approach

 [Dodds] and [IROC] method provided similar results on CYPRESS 65nm SRAMs

Environment	Shielding	[Dodds] #SEUs/bit-day	[IROC] #SEUs/bit-day	[Dodds]/ [IROC] Ratio
GEO, CREME96 Worst day	100 mil Al	7.6e-5	1.05e-4	0.72
	500 mil Al	2.8e-6	4.66e-6	0.6

- Proposed Approach:
 - Implements [Dodds] and [IROC] methodologies
 - Proposes some improvements for each of them
 - Compares their results on a set of representative components

ONERA

THE FRENCH AEROSPACE LAB

Degraded Beam Methodology

- RADEF 55 MeV proton beam was degraded
 - 12 mm of POM plastic
 - Aluminum sheet of different thickness
- Orbital LEP spectra behind a shielding is reproduced

ONERA

THE FRENCH AEROSPACE LAR

• Simple Acceleration factor can be considered

29 June 2023

Estimation of proton induced single event rate in very deep submicron technologies

Mono-Energetic Beam Methodology

- Device sensitivity to LEP characterized versus proton energy with mono-energetic beam
 - All DUT tested at ONERA MIRAGE
 - ISSI cross-tested at RADEF
- Cross-Section Peak fitted to 2nd Order Polynomial
- Orbital error rate obtained with convolutional product with the flux

$$SEUrate_{PDI} = \int_{E} XS_{PDI}(E) \times \Phi(E)dE$$

Impact of the Angle of Incidence

- For both methodologies, the impact of proton angle of incidence is considered
- Semi-sphere is slitted in 3 region of equivalent solid angles
 - Possible because SRAM array layout is symmetrical in X and Y directions
- If different angles are used, dedicated weighting coefficients can be calculated

Estimation of proton induced single event rate in very

deep submicron technologies

Selection of Representative Components

• Set of 4 bulk SRAM devices from 65 nm down to 16 nm FinFET

Manufacturer	Reference	Capacity	Node	HI data available	HEP data available	Comment
CYPRESS	CY7C2562XV18	72 Mb	65nm	\checkmark	\checkmark	
ISSI	IS61WV204816BLL	32 Mb	40nm			
IROC partner	28 nm SRAM	64 Mb	28nm	\checkmark	\checkmark	Confidential manufacturer
ESA/IROC	SHARC-FIN	96 kb	16nm FinFET	\checkmark	\checkmark	Test chip of ESA-IROC AO9828 activity

ONERA

THE FRENCH AEROSPACE LAB

Heavy-Ion Test Results

- CYPRESS, ISSI and 28nm SRAM tested at UCL
 - Takes advantage of Li ion for LET threshold characterization
- SHARC-FIN tested at RADEF
 - Takes advantage of higher available flux

29 June 2023

High-Energy Proton Test Results

- HEP Test performed at PSI PIF
 - CYPRESS and 28nm SRAM characterized in the context of JUICE activity
 - ISSI and SHARC-FIN tested in April 2022

Degraded Beam Test Results

- Degraded Low Energy Proton (DLEP) performed at RADEF
- Normal incidence test result vs Aluminum degrader thickness
 - 0 degrader thickness correspond to 55 MeV (without POM neither Al degrader) 1.0E-12

Mono-Energetic Beam Test Results

 Mono-energetic, low-energy proton (MLEP) performed at ONERA and RADEF

IRO

29 June 2023

• Experimental evidence of tilt and Roll impact on the SEE cross section on a 28nm SRAM

Proton beam

ightarrow One roll direction shows similar SEU sensitivity as the normal incidence

13

ONERA

THE FRENCH AEROSPACE LAB

IRO

ightarrow The other roll direction induces a low SEU sensitivity

• Simulations of roll impact on the SEE responses

Simulations with ONERA tools (MUSCA SEP3 / TERRIFIC) of a SRAM in 28nm technology as a function of the tilt of the proton beam

• Roll impact on the SEE cross section on a 28nm SRAM

Simulations with ONERA tools (MUSCA SEP3 / TERRIFIC) of a SRAM in 28nm technology as a function of the tilt of the proton beam

60° Tilt in y orientation

Proton beam

60° Tilt in x orientation

 \rightarrow Roll impacts the SEU cross sections differently as a function of energy

ightarrow Lower sensitivity when tilted LEPs cross the N-well and P-well

\rightarrow Analyze at electrical level ONERA

THE FRENCH AEROSPACE LAB

- Roll impact on the SET induced in a 28nm SRAM
 - Simulations with ONERA tools (MUSCA SEP3 / TERRIFIC) of a SRAM in 28nm technology as a function of the tilt of the proton beam

60° Tilt in y orientation

Proton beam

Across the N-well and P-Along the gate access well 3,5E-06 3,0E-07 3,0E-06 2,5E-07 current (A) current (A) 2,5E-06 INV1 INV1 2.0E-07 2.0E-06 1.5E-06 1,5E-07 1,0E-06 SET 1.0E-07 SET 5:0E-07 0E+00 5,0E-08 1,00E-12 1,00E-10 1,00E-09 1.00E-08 7 1,00E-06 INV2 INV2 Time (s) 1,0E-06 1.00E-12 00E-11 1.00E-10 1.00E-09 1.00E-08 1.00E-07 1.00E-06 Time (s) -5:0E-08 -1.5E-06

→ Electrical feedback loop operated by the INV2 maintains the stored state of the SRAM bit

16

THE FRENCH AEROSPACE LAB

 \rightarrow Roll of LEP impacts the charge sharing between both inverters

Estimation of proton induced single event rate in very deep submicron technologies

LEO Event Rate Estimations

- LEO orbit (800km 98° inclination 3.7 mm Al Shielding):
 - Heavy-ions: ISO15390 model IRRP calculation with 2 µm sensitive volume
 - Protons: AP8 model
- Observations
 - HEP Dominates
 - DLEP/MELP are closed
 - LEP significant for ISSI and 28nm SRAM
 - FinFET more robust and LEP contribution is 10x lower than HEP

17

ONERA

THE FRENCH AEROSPACE LAB

Conclusions

- Two methodologies proposed to estimate LEP error rate in orbit
- Both approaches provided comparable results on 4 SRAM devices, from 65nm down-to 16nm FinFET
- Angle of incidence as strong impact on LEP test results
- Each approach has specific advantages / limitations

	DLEP	MLEP		
Advantages	No need to de-lid DUT	Easier to characterize less sensitive/ lower capacity devices		
	Energy sweep is fast	More accurate characterization of the mechanism		
Limitations	Degrader activation	Longer beam time need		

ONERA

THE FRENCH AEROSPACE LAB