

ESA TEC-QEC Final Presentation days June 28, 2023

## Single-Event Effects Testing with a Laser Beam

Guidelines

Vincent Pouget IES, CNRS, University of Montpellier



# Motivation & scope of the work

- Laser testing: a complementary technique for in-lab SEE evaluation
  - ~30 years of literature
- Many parameters and variants of the technique
  - Need for recommendations on the method
- New users of the technique
  - Need for information for preparing and performing a laser testing campaign
- Need for practical guidelines
- IES-CNRS work under ESA Contract No 4000133635/20/NL/KML/rk
  - Writing of guidelines draft
  - Draft submitted to review by several experts
    - Comments, suggestions and corrections from: F. Miller, D. McMorrow, G. Bascoul, A. Costantino, T. Borel, C. Poivey
  - Writing of final guidelines document





- Document overview
- SEE laser testing: principles & parameters
- Guidelines review
- Elements for SPA equivalent LET estimation
- Summary

# Guidelines document overview

### Document contents

- Principles of SEE laser testing
- 29 guidelines, explained
- Some uses cases and their specificities
- Elements for equivalent LET calculation

### What it is:

- Introductive technical material
- A set of facility-agnostic recommendations
  - to prevent rookie mistakes and save beam time
  - to provide a basis for exploitable and comparable results
- What it is not:
  - Not to define the pertinence of using laser testing (too many project-related parameters to consider)
  - Not a handbook, see scientific literature for more details
  - Not a guarantee of a successful test campaign

# Principles of SEE laser testing

- Using a focused beam of short laser pulses to generate electron-hole pairs by photoelectric effect in the semiconductor volume of a device
  - Short pulses to reproduce the transient nature of an ionizing radiation interaction
  - Focused beam to reproduce the localized nature of the interaction
- Main advantages of laser testing
  - Spatial resolution of sensitive regions of a component
  - Convenient in-lab tool to reduce testing costs
- Main limitations
  - Requires optical access to the active semiconductor volume
  - Calibration of laser pulse energy with respect to LET has uncertainties
- No ionization of the dielectric materials ⇒ no Total Ionizing Dose
  - Laser testing not suitable if dielectric ionization may contribute to the SEE (SEGR in power devices, SEU in flash memory cells...)

#### Guideline #29

Laser testing in its common form is not appropriate for testing for single-events that require ionization of a dielectric layer.

■ No atomic or nuclear interaction ⇒ no Displacement Damage

### Laser testing beam-line



# Two complementary variants of the laser technique



# Backside testing is the preferred approach

#### Guideline #1

The preferred approach for laser testing is the **backside** approach, in which the beam is focused through the substrate into the active layer of the device.





- Front-side testing impossible if more than 2 metal layers
- Backside testing of non-flip-chip devices requires a hole in the PCB
- Backside testing of non-flip-chip BGAs: re-packaging required

## Laser wavelength

#### **Guideline #11**

For **SPA** testing of silicon devices, the recommended wavelengths are 1064 nm or 1030 nm.

#### **Guideline #12**

For **TPA** testing of silicon devices, wavelength must be comprised between 1150 nm and 1550 nm.







## Laser pulse duration

#### Guideline #13

For SPA testing of silicon devices, the pulse duration must be selected in the sub-nanosecond range in accordance with the DUT performances. Commonly used values are between 1 ps and 50 ps.

#### Guideline #14

For TPA testing of silicon devices, the pulse duration should be between 100 fs and 500 fs.

- With longer pulses:
  - $\Rightarrow$  circuit response faster than charge generation
  - $\Rightarrow$  results more difficult to interpret
- With shorter pulses:
  - $\Rightarrow$  more non-linear effects
  - $\Rightarrow$  more difficult to control & quantify the charge injection



### Laser spot size

#### Guideline #16

The laser spot size defined as the  $1/e^2$  diameter of the radial intensity profile should be smaller than  $1.8\mu$ m.

#### **Guideline #17**

Using larger spot sizes is possible as a first approach, but it can lead to false negative or false positive results.



- The smaller, the better to mimic ion-induced charge deposition
- Minimal size is limited by diffraction
  - Always larger than an ion track, may lead to spot size effects
  - Spot size characterization close to the wavelength scale is not trivial
- Not a limiting factor for the scanning resolution nor the dimensions of testable devices
- Spot size in the active layer might be temporarily increased by:
  - Using a lower magnification objective lens
  - Defocusing the beam
- Practically, the conclusions of an SEE laser test report should rely only on results obtained with the minimal achievable spot size

## Scanning resolution ⇔ Laser pulse fluence



10 µm

31 µm

precision, independently

of any consideration on

the laser spot size.

10<sup>6</sup> cm<sup>-2</sup>

 $10^{5} \text{ cm}^{-2}$ 

# Laser pulse frequency

#### Guideline #15

Except for special circumstances, the laser pulse frequency should not exceed 1kHz and should be adjusted with respect to the scanning speed and the test loop frequency.

| Laser pulses<br>Device r <u>esponse</u>         |  |  |  | Frequency too high<br>→ quasi-CW response |
|-------------------------------------------------|--|--|--|-------------------------------------------|
| Laser pul <u>ses</u><br>Device r <u>esponse</u> |  |  |  | Frequency OK → impulse response           |

Using a high pulse frequency is tempting to rapidly achieve a target laser pulse fluence and reduce scanning time

#### BUT

- Pulse period should be long enough to enable the device to return to a steady state (including charge transport + circuit effect + local temperature) between two consecutive pulses
  - Note that consecutive pulses are usually delivered on the DUT close to each other (one step distance)

# Laser pulse energy

#### Guideline #18

When defining or mentioning the laser pulse energy, it should be understood that it refers to the pulse energy incident on the beam entrance surface of the DUT.



- The pulse energy ( $\infty$  number of photons per pulse) is the main variable parameter during an experiment
  - Controls the amount of generated charge
  - Can be varied almost continuously and rapidly
  - Useful range: from fJ to 10s of nJ depending on wavelength, DUT substrate...

## Laser testing campaign

#### Guideline #2

When testing at an external facility, the responsibility of each step should be clearly attributed prior to the campaign to either the facility operator or the external user.

#### Guideline #25

#### Users must follow the laser safety regulations of the facility.





# Sample preparation steps



## Test board design considerations



#### Guideline #23

The laser light cone must not be clipped by the DUT package, socket or test board.



#### Guideline #24

The test board should not embed any source of continuous or episodic vibrations.





# DUT board installation and positionning under microscope

#### **Guideline #3**

Nothing should make contact with the microscope lenses, either during the test board installation or during the scanning of the DUT.

#### **Guideline #4**

The DUT and its test setup should be checked after installation on the beam line for signal integrity issues.

#### **Guideline #5**

Large pieces of dust that are visible in the microscope image using a large field of view should be removed from the DUT surface.

#### Guideline #6

The orthogonality of the DUT surface with respect to the optical axis of the microscope should be adjusted, typically by tilting the test board.

#### Guideline #7

The origin and orientation of the XYZ system of coordinates of the scanning system should be defined for each sample in a reproducible manner and visually verified using the imaging system. The position of the origin with respect to the DUT should be checked periodically during a campaign to detect and correct any mechanical drift.











# Methodology: define regions and runs

### If DUT area > a few mm<sup>2</sup>

- Scanning the whole die with the finest resolution is neither needed nor realistic (too long)
- Divide the DUT area into regions of interest (ROI)
  - Using symetries and repetitions in the floorplan wisely
  - Using random sampling
  - Trade-off between:
    - Desired coverage of the die
    - Required resolution or target fluence for each ROI
    - Available beam time
- Each ROI may require multiple runs (i.e. scans), with different:
  - Energies
  - Electrical parameters

# Methodology: define test goals

Guideline #8

#### The goal of each run must be clearly defined between events screening, counting or mapping. Goal S Goal C Goal M Events Screening Events Counting Events Mapping Zone 1 At least 1 event Laser Cross Section (cm<sup>2</sup>) 1E-5 · or No event? 1E-6 -(mμ) Y 1E-7 1E-8 --30 1E-9 -200 400 600 800 1000 1200 0 Laser Pulse Energy (pJ) -50 -30 -10 10 30 50 X (µm)

### $M \subset C \subset S$ , but M slower than C slower than S

| Compatible scan<br>modes | A, <b>B</b> , C, D                             | <b>B</b> , C, D                         | B, <b>C</b> , D |
|--------------------------|------------------------------------------------|-----------------------------------------|-----------------|
| Vincent Pouget           | INTELETRONQUE<br>PELETRONQUE<br>PEDES SYSTEMES | SEE testing with laser beam, guidelines |                 |

# Methodology: scan (& test synchronization) mode



Vincent Pouget

105 INSTITUT DÉLECTRONIQUE ET DES SYSTÈMES

# Scanning motion & pattern

#### Guideline #10

The scan motion must be compatible with the selected laser technique and the DUT electrical interface.



DUT motion\*Microscope motionBeam motionSPAIIITPAIIICompatible with micro-probingIII

\*Most common approach

### Scanning pattern

100 INSTITUT D'ÉLECTRONIQUE ET DES SYSTÈMES

Vincent Pouget

• Rectangular grid, random walk...

## Temperature

#### Guideline #19

The temperature of the beam-line room should be actively stabilized.

#### Guideline #20

The temperature of the DUT die should be stabilized before each run to prevent uncontrolled variations in the laser propagation and charge generation mechanisms.



<u>Rule of thumb</u>: keep T°<sub>DUT</sub> variations below 10°C during a run

Vincent Pouget ies UNSTITUT

# Methodology: defining the useful energy range

- Risk of degradation/destruction by a single laser pulse if pulse energy is too high
  - Damage energy threshold depends on DUT technology and laser parameters
- Start with low energy: E<sub>start</sub>
- Search for events threshold energy: E<sub>th</sub>
  - Using geometric scaling of E<sub>start</sub>
- Define maximum energy: E<sub>max</sub> = F x E<sub>th</sub>

| DUT technology         | E <sub>start</sub> (pJ) | q | F   |
|------------------------|-------------------------|---|-----|
| Deep sub-micron CMOS   | 1                       | 3 | 50  |
| Older CMOS             | 10                      | 2 | 100 |
| Linear or power device | 20                      | 2 | 200 |





INSTITUT D'ÉLECTRONIQU

## Parameters monitoring

#### **Guideline #26**

Laser pulse energy:

The laser pulse energy should be periodically monitored and recorded.

### Guideline #27

The focused laser spot size of a **free-space optical setup** should be periodically monitored and recorded.

# Guideline #28Focus position:The position or

Spot size:

The position of the beam-waist along the microscope axis with respect to the DUT should be maintained in the active layer of the DUT during the scans, with a tolerance that should be defined as a function of the test goal and parameters.

#### Particularly critical for TPA

# Elements for equivalent LET calculation

Vincent Pouget

INSTITUT D'ÉLECTRONIQUE



This provides a good order of magnitude in most cases, many refinements are possible

- Practical guidelines for laser SEE testing
- First steps towards homogenization of the technique
- Similar effort in progress in the US by NASA, JPL, NRL, DTRA
  - Document to be released soon
- Readers & users feedback is welcome