# Radiation-induced SEL in a COTS SRAM memory - test and flight data

Investigation on intra-die variability and radiation-induced SEL in a COTS SRAM memory flying on Proba-V + Flight data analysis of SEL in a COTS Samsung SRAM and comparison with SEE test results

Douglas A. Santos, Lucas M. Luza, André M. P. Mattos, Thomas Borel, Viyas Gupta, Luigi Dilillo



**PROBA-V** Context

**Motivation** 

Outline

**Experimental Setup** 

**Accelerator Experiments** 

**SEFI Analysis** 

Conclusion



# **PROBA-V Mission**

Project for On-Board Autonomy - Vegetation

- Miniaturized version of the VEGETATION instruments
  - Tracks the vegetation's evolution and its links to climate changes from the SPOT 4 and 5 satellites
- Launched on May 2013
  - Low Earth heliocentric orbit at an altitude of 820 km
  - Main mission ended in June 2020
  - Still in operation



PROBA-V Representation ESA - P.Carril, 2012



# **PROBA-V Dual Memory Redundancy**



#### Main and redundant memory lines

- Both memory lines implement ECC with single-error correction and double-error detection
- Main operates most of the time
- Redundant takes over temporarily when the ECC fails (error 406)

Switching from main to redundant lines takes between **3-4** minutes

Memory: Samsung K6R4016V1D

# **PROBA-V Flight Error Reporting**

Monitored SRAM errors through error type flags

- Flag 406 Uncorrectable
  - ECC failure
  - This flag is logged when the SRAM memory undergoes a Single Event Latch-Up (SEL)
- Flag 369 Correctable
  - 1000 accumulated single errors
  - This flag was defined during the course of the PROBA-V mission, they were not initially recorded. The flag is raised when the SRAM memory remains functioning but at least 1000 single errors are detected during the EDAC checks



## **PROBA-V: Observed Effect**

Error flags appeared frequently during the flight, mostly in SAA area and polar regions

- 07/05/2013 to 03/03/2020
- 1054 errors with type flag 406
- 77 errors with type flag 369





## **PROBA-V: Error types in time (in flight)**



LINE 2 was manually defined as main line at around day 1000

Increased error rate (2.3x)





Two hypothesis could explain these effects:

• Different temperatures affect the SRAM's SEL susceptibility

• The difference in environments affect the SEL susceptibility





# Pre-flight test report

Characterized the SRAM memories for SELs with heavy-ions

Did not report number of errors

• Test performed only in static mode

Lower tested LET of 10.1 MeV/cm<sup>2</sup>/mg



| Run # | Angle  | Eff. LET                 | Fluence [cm <sup>-2</sup> ] | Time | Corrected                   | SEL # | SEL XS             |
|-------|--------|--------------------------|-----------------------------|------|-----------------------------|-------|--------------------|
|       | [deg.] | [MeVcm <sup>2</sup> /mg] |                             | [s]  | Fluence [cm <sup>-2</sup> ] |       | [cm <sup>2</sup> ] |
| 52    | 0      | 10.1                     | 1.00E+07                    | 1154 | 9.98E+06                    | 7     | 7.01E-07           |
| 53    | 60     | 20.2                     | 3.81E+05                    | 220  | 3.36E+05                    | 103   | 3.06E-04           |
| 54    | 45     | 14.3                     | 2.18E+06                    | 259  | 2.11E+06                    | 31    | 1.47E-05           |





#### Identify the effects of the SEL in the memory

- Pre-flight experiments could not predict the observed outcome
- Identify the ECC failures during flight

Prove that ECC failures happened because of SEFIs caused by SELs



# **Experiment Setup**



# **Experiment Setup**



Setup with precise timestamping

- Current measured with 25 uA precision
- Timestamp based on internal clock
- Errors and current reported with Timestamps

Enables Real-time comparison between errors and current

# **Experiment Setup: Test Modes**

#### Static 0xAA

- Write 0xAAAA in all addresses
- Irradiate the DUT
- If SEL, power cycle the memory

Do not read the memory to check for errors latch-up occurs

#### March C-

- Mimics actual operation with the memory
- If SEL, power cycle and restart test

```
↑ {w0}
{↑ {r0,w1}; 0x11 / 0x12
↑ {r1,w0}; 0x19 / 0x1A
↓ {r0,w1}; 0x21 / 0x22
↓ {r1,w0}; 0x29 / 0x2A
↑ {r0}} 0x31
```



# **Experiment Setup: Current Monitoring**





# **Experiment Setup: SEL Analysis**

#### **Test Parameters**

- Hold time:
  - 50 ms
- Cut time:
  - 200 ms
- Threshold:
  - 10 mA
  - 80 mA
  - 120 mA
  - Max





#### **Accelerator tests**



## Accelerator tests: Heavy-Ions



#### **Heavy-Ions Experiment**

- RADEF Facility
- February 2022
- Tested LETs:
  - 7.2 MeV/cm<sup>2</sup>/mg
  - 13.3 MeV/cm<sup>2</sup>/mg
  - 14.4 MeV/cm<sup>2</sup>/mg
  - 24.5 MeV/cm<sup>2</sup>/mg
  - 34.6 MeV/cm<sup>2</sup>/mg
  - 48.5 MeV/cm<sup>2</sup>/mg
  - 49.0 MeV/cm<sup>2</sup>/mg
- Some of the LETs were achieved by testing the DUTs in different angles



## **Heavy-Ion SEL Cross Section**





### **Accelerator tests: Protons**



#### **Proton Experiment**

- PSI facility
- December 2022
- Tested energies
  - 51 MeV
  - 70 MeV
  - 101 MeV
  - 151 MeV
  - 200 MeV
- DUTs were tested separately to have a smaller and homogeneous beam



## **Proton SEL Cross Section**





### Accelerator tests: Laser



#### Laser Experiment

- ESTEC
- May 2023
- Tested energies up to 550 pJ
- Tested with different temperatures
  - 25°C (room temperature)
  - 40°C
  - 60°C



# **Laser Characterization**

#### **Preliminary test**

- Zone 8
- Laser energy: 210 pJ
- Includes different areas of the die
  - Periphery
  - Memory cells





## Laser Characterization: Zone Selection







## **Laser Characterization**





## Laser Characterization: Lower energy effect







## **Normalized Laser SEL Cross Section**





## Laser Cross Section for different temperatures

Normalized laser SEL cross section Energies ranging from 190 to 550 pJ Characterized with different temperatures

- 25 °C
- 40 °C
- 60 °C





# **SEFI** analysis



## **SEFIs analysis**

#### HEAVY-IONs - Timeline analysis

#### Error timestamp x lvcc



• Example: run 53, March C-, LET 48.5 MeV.cm<sup>2</sup>/mg, ESA 090



## SEFI in SEL

#### Point-by-point experiment

- Physical bitmap showed SEFI spreading along the bit 2048 block column
- Latchup impacts the entire block (vertical) because of the charge sharing









#### **SEFI in SEL**







Performed characterization of the SRAM memory

- Heavy-lons
- Protons
- Laser

SEFIs were proven to be caused by SELs

• Error flag type 406 probably detected most of the SELs

Memories should be characterized also in **dynamic mode** 

• Further insight on the errors in the memory can be obtained The temperature is impacts significantly the susceptibility to SELs Telemetry data should be carefully selected





- Paper accepted in RADECS
  - Heavy-ions and protons characterization
- Paper in the submission process to JINST journal
  - Experimental setup
- New submission to the journal extension
  - Laser characterization and direct comparison with flight data



# Radiation-induced SEL in a COTS SRAM memory - test and flight data

Investigation on intra-die variability and radiation-induced SEL in a COTS SRAM memory flying on Proba-V + Flight data analysis of SEL in a COTS Samsung SRAM and comparison with SEE test results

Douglas A. Santos, Lucas M. Luza, André M. P. Mattos, Thomas Borel, Viyas Gupta, Luigi Dilillo



## **EXTRA SLIDES**





#### Test Modes

- Dynamic Stress
  - If SEL during run, restart with  $\uparrow$ {w1}

{w1}
 {w1, w0, r0, r0, r0, r0, r0, r0); 0x11 / 0x12 / 0x13 / 0x14 / 0x15 / 0x16 / 0x17
 (r0, w1, r1, r1, r1, r1, r1); 0x19 / 0x1A / 0x1B / 0x1C / 0x1D / 0x1E / 0x1F
 (r1, w0, r0, r0, r0, r0, r0); 0x21 / 0x22 / 0x23 / 0x24 / 0x25 / 0x26 / 0x27
 (r0, w1, r1, r1, r1, r1, r1); 0x29 / 0x2A / 0x2B / 0x2C / 0x2D / 0x2E / 0x2F
 (r1, w0, r0, r0, r0, r0, r0); 0x31 / 0x32 / 0x33 / 0x34 / 0x35 / 0x36 / 0x37
 (r0, w1, r1, r1, r1, r1, r1); 0x39 / 0x3A / 0x3B / 0x3C / 0x3D / 0x3E / 0x3F



## **Laser SEL Cross Section**





# **Memory Mapping**

#### LASER experiment

Physical Mapping of the memory cells

- Selected zones in Laser experiment
- Zones 9, 10, 12, 13, 14, 15, and 16
- Checking with Zones 18 and 19





# **Memory Mapping**

#### Logical bitmap

• different patterns for tested zones





# **Memory Mapping**

|         |           | 111 |       |        |              |
|---------|-----------|-----|-------|--------|--------------|
|         |           |     |       |        | Point 2      |
|         |           |     |       |        | रा छ         |
|         |           |     |       |        |              |
|         |           |     |       | -      | l<br>Point 6 |
|         |           |     |       |        |              |
| -       |           |     |       |        |              |
|         |           |     |       |        |              |
|         |           |     |       |        | 1            |
| Esta di |           |     |       |        |              |
|         |           |     |       |        |              |
| Poi     | <br>nt 0P |     | n<br> | Zone.6 |              |
| × 1     |           |     |       |        |              |







Followed procedure to read entire memory

- 1. Increase memory current threshold to 400 mA
- 2. Increase banks current threshold to 400 mA
- 3. Write entire memory with 0xAAAA
- 4. Position the laser in the top area with SELs at lower energies
- 5. Trigger SELs with laser pulse in the energies: 340, 350, 360, 390, and 600 pJ.
- 6. Wait for a few seconds for the current to stabilize
- 7. Read memory to get complete error bitmap
- 8. Power cycle memory and go for next energy



# SEFI in SEL: point 4







# SEFI in SEL: point 11







### Laser and Heavy-Ion Equivalence

x\_hi = (x\_ls - 320) \* 0.6



