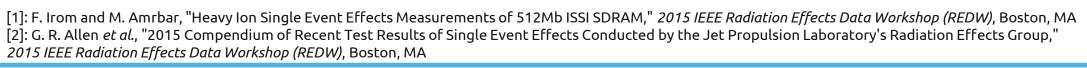
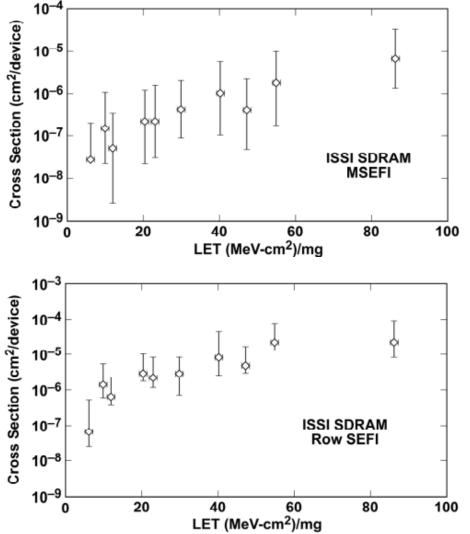
Test Results on SDRAM IS42S86400B-7TLI

Thierry BONNOIT **Maximilien GLORIEUX** Cesar BOATELLA POLO


29 June 2023



Test Results on SDRAM IS42S86400B-7TLI

Context and Objectives

- [1][2] reported important SEFI mechanism on ISSI IS42S86400B-7TL SDRAM
 - Million SEFI: Million errors induced by one ionizing particle impact
 - Row/Column SEFI: Set of row/Column with a large number of errors
- Objectives:
 - Reproduce SEFI with LASER attack:
 - Identify sensitive area and event signature
 - Explore mitigation options
 - Measure HI sensitivity
 - Evaluate LEON4 EDAC capability to detect and correct SEFI induced errors

LASER Test Approach Overview

• CNES Laser Facility characteristics:

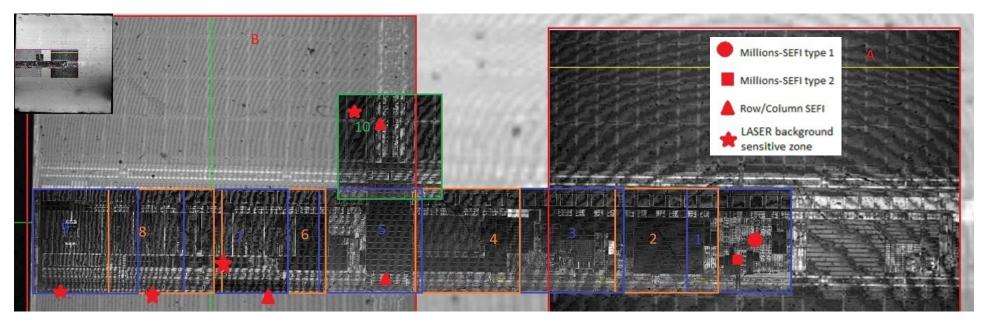
- Single photon absorption
- Wavelength: 1064nm
- Pulse energy: up to 2.5nJ per pulse
- Pulse picket to reduce pulse frequency
- Pulse duration: 7.5ps
- 1X to 50X lens
 - Range: 13x13 mm to 250x250 µm
 - Resolution: 22µm to 0.9µm

• Dynamic test algorithm with flexible options:

- Operation order
- Data pattern
- Address sequence

LASER Experiment Sizing

- 50 MHz operation: complete R/W operation duration is 1.4s
- Die area is 9.1x9.1 mm
- Overall scan duration (512x512 pixel per zone):


Lens	Scannable area	Number of zone	Duration
1X	13×13 mm	1	4 days/scan
5X	2.5×2.5 mm	16	68 days/scan
20X	650×650 µm	196	2 years/scan
50X	250×250 µm	1369	16 years/scan

- Possible options:
 - Increase number of laser hit per memory operation
 - Reduce the address range of memory operation
 - Select scanned area

LASER Test Results

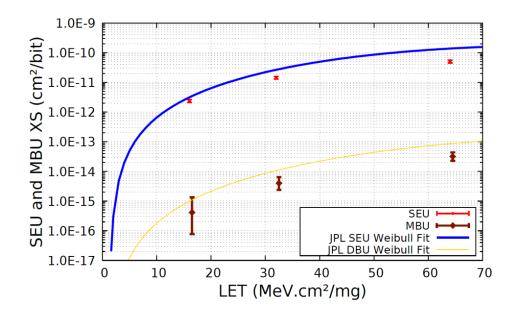
- 2 Million SEFI Mechanisms identified
- Row and Column SEFI were observed
- Some regions sensitive to LASER charge accumulation
- Other events (SEU, MBU, MCU, Transients)

Million SEFI Type 1

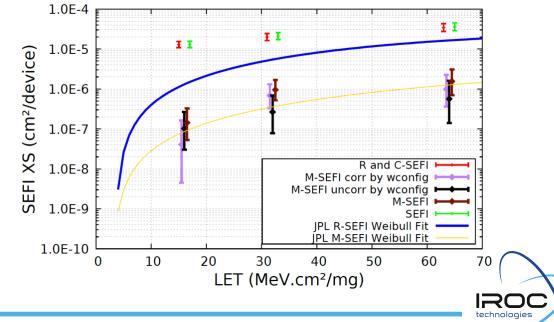
- Not related to a specific address range and data pattern
- For most of observed events:
 - Similar erroneous data was read at each address (independently of the test pattern)
 - Each address has a specific erroneous data pattern
- Most of the errors are corrected after a write operation but:
 - Few address are still not operating correctly
 - If the refresh is disabled, much more address are not operating correctly
 - The uncorrectable errors seem weak cells / stuck bits
- Power cycle needed to recover
- Possible explanation:
 - Upsets in the memory physical mapping tables that are usually loaded at power on and are not accessible by the user

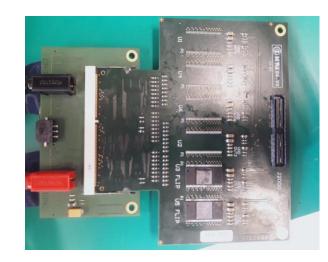
Million SEFI Type 2

- Upsets in the memory configuration register
 - Modification of the burst sequence
 - New burst configuration is either "000" or "111"
 - Upset of the "Single location address" and "Sequential/Interleaving" bits
 - CAS bit was not upset
- Using a burst of size 1 allows to mask this SEFI
- Re-writing the configuration register correct the SEFI
 - Stored data is not lost and can be read afterward
 - If some write operations were performed, they may not be performed correctly


LASER Charge Accumulation

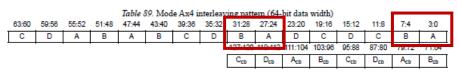
- When LASER energy is increased, some regions are sensitive to the remaining energy not filtered by the pulse picker
 - All address are erroneous
 - Output is tied to 0xFF
- This is a test artifact!
- Observed at several location on the die


Stand-alone HI Tests


- Objective
 - Reproduce SEFI events and measure XS
- SEU MBU
 - Consistent with JPL results

• SEFIs

- M-SEFI 1 and 2 observe as in LASER
- Other SEFI mechanisms identified



System HI Tests with GR740 LEON4

- ISSI as main memory of GR740 LEON4
 - Assess EDAC capability to detect/correct SEFIs
 - 2 devices irradiated simultaneously
- GR740 EDACs are based on 4 bits nibbles
 - 1 nibble error can be corrected
 - Bus data width: 64 or 32 bits (data wrote on 2 consecutive address)
 - 2 interleaving scheme:
 - Mode A: 4 group of 16 bits
 - Mode B: 2 group of 32 bits
 - Test performed in mode A 32 bits

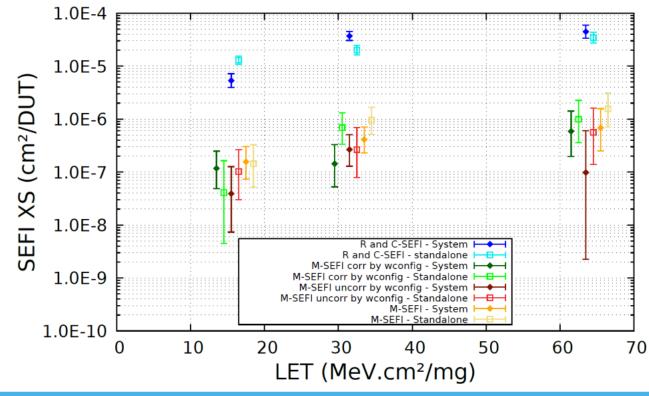
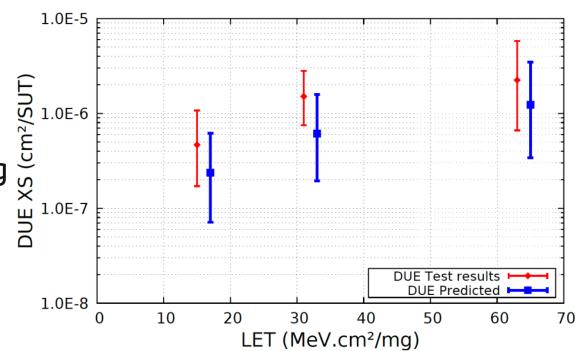

				Table 9	90. Mod	e Bx2 i	nterlea	ring patt	em (64-)	bit data	width)			-		_
63:60	59:56	55:52	51:48	47:44	43:40	39:36	35:32	31:28	27:24	23:20	19:16	15:12	11:8	7:4	3:0	
Α	В	Α	В	Α	В	Α	в	В	Α	В	Α	В	Α	В	Α	[
												95:88	87:80	10.12	71.04	
												Acb	Bcb	Acb	Bcb	[

			Table !	91. Mod	e Ax4 i	nterleav	ing patt	ern (32-	bit data	width)			
95:80	79:76	75:72	71:68	67:64	63:32	31:28	27:24	23:20	19:16	15:12	11:8	7:4	3:0
-	C _{cb}	D _{cb}	A _{cb}	B _{cb}	-	С	D	Α	В	Α	В	С	D
-	B _{cb}	A _{cb}	D _{cb}	C _{cb}	-	В	Α	D	С	D	С	В	Α

	Table 92. Mode Bx2 interleaving pattern (32-bit data width)													
95:8	0 79:7	5 75:72	71:68	67:64	63:32	31:28	27:24	23:20	19:16	15:12	11:8	7:4	3:0	
-	-	-	A _{cb}	B _{cb}	-	Α	В	Α	В	Α	В	Α	В	1
-	-	-	B _{cb}	A _{cb}	-	В	Α	В	Α	В	А	В	A	

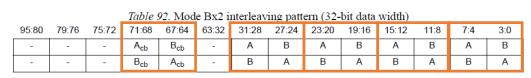
System Test Results


- Test algorithm implemented in software, in the LEON4 CPU
- EDAC error counters used to identify SEFIs
- Similar cross-section as stand-alone test

Detectable Uncorrectable Errors

- GR740 SDRAM are protected with Reed-Solomon ECC
 - EDAC is able to correct data even if one SDRAM device is not functional
 - DUE occurs if two nibbles are erroneous
 - SEFI + SEFI
 - SEFI + SEU
 - DUE are detected by LEON4 interruption when the corresponding address is read
 - DUE XS depends on software execution flow
 - XS is reported for the system

Impact of EDAC Configuration


- The impact of EDAC mode was assessed analytically
 - EDAC can correct one nibble error per group
 - In mode A 64/32 bit or B 64 bits:
 - a M-SEFI impact one nibble / group
 - $P(DUE) = P(Ev_1 \cap Ev_2)$
 - Ev_1/Ev_2 is M-SEFI, R/C-SEFI or SEU
 - $P(A 64) = 2 \times P(A 32)$ but system memory is 2 times larger in 64 bit mode
 - In mode B 32 bits:
 - SEFI impact two nibble / group
 - Any SEFI will lead to DUE
 - $P(DUE) = N_{DUT} \times P(SEFI)$

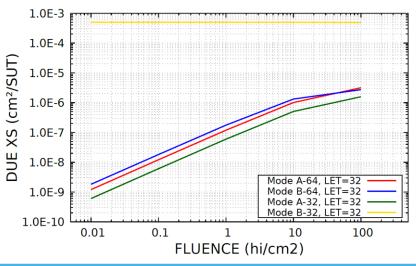

	Table 89. Mode Ax4 interleaving pattern (64-bit data width)														
63:60	59:56	55:52	51:48	47:44	43:40	39:36	35:32	31:28	27:24	23:20	19:16	15:12	11:8	7:4	3:0
С	D	Α	В	Α	В	С	D	В	A	D	С	D	С	В	Α
								127:120	119:112	111:104	103:96	95:88	87:80	79:72	71:64
								Ccb	Dcb	Acb	Bcb	Ccb	D _{cb}	Acb	Bcb

	Table 90. Mode Bx2 interleaving pattern (64-bit data width)														
63:60	59:56	55:52	51:48	47:44	43:40	39:36	35:32	31:28	27:24	23:20	19:16	15:12	11:8	7:4	3:0
Α	В	Α	В	Α	В	Α	В	В	Α	В	Α	В	Α	в	Α
												95:88	87:80	79:72	71:64
												Acb	Bcb	Acb	Bcb

Table 91. Mode Ax4 interleaving pattern (32-bit data width)

95:80	79:76	75:72	71:68	67:64	63:32	31:28	27:24	23:20	19:16	15:12	11:8	7:4	3:0
-	C _{cb}	D _{cb}	A _{cb}	B _{cb}	-	С	D	Α	В	Α	В	С	D
-	B _{cb}	A _{cb}	D _{cb}	C _{cb}	-	В	Α	D	С	D	С	В	Α

GEO Error Rate Estimations

- GEO DUE probability was estimated considering a memory restore cycle each hour
 - Memory restore cycle is write config register + memory scrubbing
- 15 year GEO mission, with 3.7 mm of Al spherical shielding
- As only 3 LET are available, simple error calculation is performed
- In mode B 32 bit, it corresponds to the probability to get a SEFI during the mission

ECC Mode	P(DUE) in 1h	P(DUE) in 15y
A – 64 bit	2.16E-9	0.028%
B – 64 bit	3.23E-9	0.042%
A – 32 bit	1.08E-9	0.014%
B – 32 bit	1.74E-4	100%

Conclusions

- Several SEFI mechanism were identified and observed with LASER
 - Some cannot be corrected with write config register (power cycle needed)
- LASER experiment is a good preparation for complex HI test but
 - Experiment sizing can be difficult
 - LASER experiment is not exhaustive
- LASER results helpful to prepare post-processing scripts
- Stand-alone HI test provided similar results as JPL
- System test shown that GR740 EDACs can correct SEFIs
 - DUE still possible in case of SEFI+SEU or SEFI+SEFI on several memory components
 - GEO mission DUE very unlikely in mode A or B-64 bits
 - EDACs mode B-32 bits not well hardened against SEFI/permanent faults

