

SEE tests on power Schottky diodes

E. LE GOULVEN, F. WIDMER, A. VAROTSOU & C. BOATELLA-POLO Presented by J. GUILLERMIN

Final Presentation Days 2023 – ESA ESTEC – 30/06/2023

- Introduction & Context
- Devices Under Test
- Test procedure & setup
- Heavy ions test results
- Synthesis
- Conclusion

- Silicon Schottky \rightarrow traditionally considered immune to destructive SEE
- Recent works published on literature
 - shown that silicon power Schottky diodes may be sensitive to destructive events while reverse biased under heavy ion irradiation
- Previous test campains in 2015 (STM products)

Power Schottky diodes from STMicroelectronics													
Reference		Identification	Package	VRRM(V)	IF (Per diode)	IR (@VRRM) (A)	Number of sample						
STPS20100FY1	Marking	FE1652	TO-254	100	10A	150.0E-6	15						
STPS1045S1	Marking	FE1650	SMD 0.5	45	10A	100.0E-6	13	ି କୁ					
STPS6045C2FSY1	Marking	FE1651	TO-254	45	30A	500.0E-6	15	Ē					
	Date code	1144A						orc					
	ST O/C #	LOTID 33125B10ZY LOTID 33125B1001]	100		10.0E-6		du					
STPS40H100C2FY	Trace Code	33125B10ZY	TO-254		20A		10	ਟ					
	Bulk ID	T2R02J0SE023											
	Marking	5106-013-01 FR Beo											
STPS3045C	Marking	FE1652	TO-254	45	15A	200.0E-6	10						
STPS20200C	Marking	FE1653	TO-254	200	10A	15.0E-6	10						
STPS61170C	Marking	FE1654	TO-254	170	30A	60.0E-6	10						
STPS40100HR	Marking	FE1655	TO-254	100	20A	30.0E-6	10						

New generation prototype

• Irradiations performed at GANIL

- ➤ All QPL parts considered PASS at 75%
- > These parts are used on space mission at 75% maximum Vr
- > New prototypes are considerably more sensitive to SEB

		Xe (LET=	61.02MeV	.cm²/mg)	Kr (LET=27.18MeV.cm²/m			
			Failed			Failed		
		Ok	PIST	Fail	Ok	PIST	Fail	
	STPS20100 (QPL)	75%	80%	100%				
cs	STPS1045 (QPL)	100%						
on	STPS6045 (QPL)	100%		75%				
letr	STPS40100 (QPL)	70% *	75%	100%				
roe	STPS3045 (NEW)	< 50%**	50%	78%	78%		100%	
Mic	STPS20200 (NEW)	50%		75%	75%		100%	
ST	STPS61170C (NEW)	40%	50%	76%	44%		59%	
	STPS40H100 (NEW)	50%	65 %	80%	75%		100%	

*2 parts pass 75%

**Not tested

Fail : IR > IR @ VRRM

Number % : Value of the % of VRMAX

• Previous test campaign results

- Focus on STM Schottky diode result
- > Two different failure signature were observed during the first GANIL campaign.
 - o Current step was the most common.
 - \circ Ir degradation with fluence was only observed in some of the new prototypes.

• Objective of the work

- perform SEB test under heavy ions
- > highlight rules for the selection of radiation tolerant diodes through various characterizations
- Different manufacturers & relevant products for space industry

• For this study parts were provided by

- STMicroelectronics
- Thales Alenia Space
- Airbus Defence and Space

• The project at a glance :

- About 40 hours of Heavy Ion beam
- > > 270 runs performed
- > 20 references tested
- > 100 parts irradiated

Devices Under Test (1/2)

• Selection of additional references

Si & SiC schottky diodes

Reference	Diode Type	SiC	Manufacturer	Package	VRRM (V)	Number of sample
STPS3045- XF54S02Y	Schottky	no		SMD 05	45V	10
STPS80H100	Schottky	no		SMD 1	100V	10
STPS30170- XZ04P029	Schottky	no		SMD 05	170V	10
STTH60400	Ultrafast	no				8
STTH61W04CSA1 (equivalent STTH60400)	Ultrafast	no	STMicroelectronics	SMD 1	400V	2
STPSC1006	Schottky	yes		TO-220-2	600V	13
STPS40M60CR	Schottky	no		TO-220-3	60V	15
STPSC10H065	Schottky	yes		TO-220-2	650V	11
STPS4045CW	Schottky	no		TO-247-3	45V	11
STPS5H100BY	Schottky	no		DPACK	100V	5

• Selection of additional references

Reference	ence Diode Type SiC Manufacturer		Package	VRRM (V)*	Number of sample	
35CGQ100	Schottky	no		TO-254	100V*	15
45CKQ100	Schottky	no		TO-258	100V	5
120LQ100	Schottky	no	International Rectifier	SMD-1	100V*	12
HFB25HJ20	Ultrafast	no	SMD.5		200V	5
80CLQ150	Schottky	no		SMD-1	150V*	11
SML10SIC06SMD5	Schottky	yes	SemeLAB Limited	SMD.5	600V	6
MBRB8H100T4G	Schottky	no	0.7	D ² PACK	100V	6
BAS21LTG1	Fast Switching	no	On Semiconductor	SOT23	250V	5
1N6817	Schottky	no	Microsemi	ThinKey™2	100V*	9
SHDC124545P	Schottky	no	Sensitron Semiconductor	TO-258	150V*	12

> planar or trenched Schottky diodes and ultrafast rectifiers.

Test procedure & setup

• Setup considered

Measure leakage current behavior under irradiation on reverse-biased diodes.

• STATUS CRITERIA

- SEB / Fail: abrupt leak of Ir during irradiation
 - |Ir| > IR (@VRRM)
- > Failed PIST: abrupt leak of Ir during stress test
 - |Ir| > IR (@VRRM)

Test procedure & setup

- Irradiations performed
 - Mostly at UCL
 - Complementary at GANIL

	UCL BEAM CHARACTERISTICS									
Heavy ions used : ¹²⁴ Xe ³⁵⁺ (62.5 MeV.cm ² /mg), ⁸³ Kr ²⁵⁺ (32.4MeV.cm ² /mg), ⁵³ Cr ¹⁶⁺ (16MeV.cm ² /mg), Fluence: 1.10^7 cm ⁻² (in two steps 1.10^6 and 9.10^6 cm ⁻²) for S Fluence: 3.10^5 cm ⁻² for silicon carbide diode										
	GANIL BEAM CHARACTERISTICS									
Heavy lons used :	Ion: ¹³⁶ Xe ⁵⁴⁺ Air / AI (mm / μm) : 100 / 550 Init. / final energy (MeV) : 6709.2 / 6.0 Range (μm) : 61.0 LET (MeV.cm2.mg-1) : 61.0* *comparable to the first UCL configuration in Table I and used as a reference point									

Test procedure & setup

• Heavy ions test plan

PIST (Post-Irradiation Stress Test) : After the irradiation, a stress is applied to the diode in order to reveal any latent damage on the irradiated devices.

Ř

		Xe (LET=62.5MeV.cm ² /mg)		Kr (LET=32.4MeV.cm ² /mg)			Cr (LET=16MeV.cm ² /mg)			AI (LET=5.7MeV.cm²/mg)			
			Failed			Failed		-	Failed		-	Failed	
		Ok	PIST	Fail	Ok	PIST	Fail	Ok	PIST	Fail	Ok	PIST	Fail
	STTH60400	100%											
ß	STPS3045	75%											
nic	STPS4045CW	56%		75%									
etro	STPS30170	50%	75%	100%	75%								
bele	STPS40M60CR	50%		75%	75%								
icro	STPS80H100				75%								
TM	STPS5H100BY		75%	75%	75%								
S	STPSC10H065*				57%		93%	66%		100%	100%		
	STPSC1006*				50%		86%	69%		93%	93%		100%
le	45CKQ100	100%											
iona	35CGQ100	100%											
nati	HFB25HJ20	75%		100%									
Re	120LQ100	75%		100%									
드	80CLQ150	75%		100%									
On comi	BAS21LTG1	100%											
On semi	MBRB8H100T4G	75%		100%									
Semelab	SML10SIC06SMD5*		29%	58%	33%		50%		42%				
diodes inc.	1N4148WQ	100%											
Microsemi	1N6817	75%											
Sensitron	SHDC124545P	100%											

* Silicone carbide diode

• PART could be "FAIL" but not necessary "not functional"

Fail : IR > IR @ VRRM

PASS: IR < IR @ VRRM

Number % : Value of the % of VRMAX

• Focus on ST Microelectronics results

 \succ 2 references "Fail" after a PIST \rightarrow degradation of the leakage current

30/06/2023

TRAD Tests & Radiations

• Focus on ST Microelectronics results

- > 2 references "Fail" after a PIST \rightarrow degradation of the leakage current
- \succ for the example IRmax respectively equal to 3.5µA and 20µA

• Focus on International Rectifier results

		Xe (LET=62.5MeV.cm ² /mg)		Kr (LET:	Kr (LET=32.4MeV.cm ² /mg)			=16MeV.c	:m²/mg)	AI (LET=5.7MeV.cm²/mg)			
			Failed			Failed			Failed			Failed	
		Ok	PIST	Fail	Ok	PIST	Fail	Ok	PIST	Fail	Ok	PIST	Fail
	STTH60400	100%											
ŝ	STPS3045	75%											
nic	STPS4045CW	56%											
ŝtro	STPS30170	50%			75%								
oele	STPS40M60CR	50%			75%								
icro	STPS80H100				75%								
ML	STPS5H100BY				75%								
S	STPSC10H065*				57%			66%			100%		
	STPSC1006*				50%			69%			93%		100%
a	45CKQ100	100%											
ier	35CGQ100	100%											
nati	HFB25HJ20	75%		100%									
Re	120LQ100	75%		100%									
5	80CLQ150	75%		100%									
On comi	BAS21LTG1	100%											
On semi	MBRB8H100T4G	75%											
Semelab	SML10SIC06SMD5*				33%								
diodes inc.	1N4148WQ	100%											
Microsemi	1N6817	75%											
Sensitron	SHDC124545P	100%											

* Silicone carbide diode

• Focus on International Rectifier results

- > Same kind of behaviour observed ion different references
- PARTS are still functional

Run No. 52 - 120LQ100 - Part No. 1 - VR=100.0V

• Focus on **SiC diodes**

- > information on literature about the sensitivity of SiC diode (at that time)
- SiC diodes seem more sensitive to destructive events
 - $\circ~$ Consistent with work published in the past years

		Xe (LET=62.5MeV.cm²/mg)		Kr (LET=	32.4MeV.	cm²/mg)	Cr (LET	=16MeV.c	:m²/mg)	AI (LET=5.7MeV.cm²/mg)			
			Failed			Failed			Failed			Failed	
		Ok	PIST	Fail	Ok	PIST	Fail	Ok	PIST	Fail	Ok	PIST	Fail
	STTH60400	100%											
(J)	STPS3045	75%											
DIC.	STPS4045CW	56%											
stro	STPS30170	50%			75%								
oele	STPS40M60CR	50%			75%								
icro	STPS80H100				75%								
ML	STPS5H100BY		75%	75%	75%								
S	STPSC10H065*				57%		93%	66%		100%	100%		
	STPSC1006*				50%		86%	69%		93%	93%		100%
6	45CKQ100	100%											
ier	35CGQ100	100%											
nati	HFB25HJ20	75%											
Re	120LQ100	75%											
	80CLQ150	75%											
On comi	BAS21LTG1	100%											
On semi	MBRB8H100T4G	75%											
Semelab	SML10SIC06SMD5*		29%	58%	33%		50%		42%				
diodes inc.	1N4148WQ	100%											
Microsemi	1N6817	75%											
Sensitron	SHDC124545P	100%											

• Focus on SiC diodes

- Various behavior observed
- These signatures were observed for the 3 references of SiC diode.

Synthesis

- normalized synthesis of SEE during irradiations or PIST, sorted by ascending VRRM
 - > No relationship between VRRM and heavy ion sensitivity

• Test results as a function of the normalized applied reverse voltage

<u>ک</u>

Synthesis

- SEE sensitivity depends on the applied reverse voltage
 - Consistent with physical phenomena, based on impact ionization triggered by high local electric field close to the Schottky junction
- 75% VRRM derating used for diodes does not ensure safe operating conditions against HI
 - The 50%VRRM derating [M.Casey,2015] [M.Casey,2016] seems to be more reliable
 - 1 exception over 23 references
- Trench-based Schottky diode (NTST20120CTG)
 - > most sensitive silicon device with critical failures from VR=70%VRRM (despite better distribution of electric field)
- 3 studied SiC Schottky diodes
 - two show critical failure and permanent degradation
 - > at quite low LET (32,4 MeV.cm²/mg) & at rather low VR/VRRM ratio
- Ultrafast rectifiers seem to be radiation resistant
 - > 2 failures at high LET and 100 %VRRM over the 6 references

Conclusion

- More than 20 reference tested
 - \succ half is degraded due to heavy ions irradiation
- 3 different phenomena triggered by heavy ions

> permanent degradation, failure during irradiation and failure during post-irradiation stress (PIST).

- Derating to 50% seems more secure
- SiC diode technology seems more sensitive than Si diode technology
 - > More investigation on SiC diode have to be performed in order to understand the different phenomenon observed
 - > Various work published on SiC diodes in the past years
- RADECS 2018 « Analysis of Heavy Ion Irradiation Test Results on Power Diodes »,

M. Mauguet¹, D. Lagarde², L. Azema¹, E. Le Goulven¹, A. Varotsou¹, X. Marie², C. Boatella-Polo³ (¹ TRAD, ²INSA LPCNO, ³ESA)

Thank you for your attention

For further information on:

<u>www.trad.fr</u> – <u>www.fastrad.net</u> <u>www.rayxpert.com</u> – <u>www.r2cots.com</u>

TRAD Tests & Radiations @TRAD_Officiel

+33 (0)5 61 00 95 60