

Wojtek Hajdas :: LTP/ DIAPP :: Paul Scherrer Institut

Summary Report - Proton Irradiation Facility at PSI

Detectors, Irradiations and Applied Particle Physics

28.06.2023

PSI and its accelerators

European Components Irradiation Facilities

PSI deliverables

Primary beam:

- Protons

Other beams:

- Electrons
- Pions and muons
- Neutrons
- X-rays and gamma-rays

PSI exposure facilities for radiation effect studies

- Proton Irradiation Facility since 1992
 - Confirmation of the 1st latchup in space
- Connected to COMET cyclotron of the Proton Therapy Center
- Priorities given by patient exposure plan
- Other exposure sides and particles:
 - piM1 secondary beam area with electrons,
 pions and protons
 - Electron mono-chromator with monoenergetic electrons from beta sources

PSI exposure facilities for radiation effect studies

- Main functions:
 - User-lab for radiation effects studies in electronics
 - Realistic simulator of space radiation environment
 - Source of mono-energetic particles for rad-tests
 - Calibration station for monitors and detectors
 - Radiation qualification for space technologies

NA area with COMET cyclotron and exposure sites

COMET Compact Medical Therapy Cyclotron

- Facility of the PSI Proton Therapy Center
- Designer H. Blosser, MSU/USA
- Delivered by VARIAN
- 250 MeV fixed energy
- Mass 90 tons
- Intensity range 0-1000 nA
- In operation since 2007

Proton Irradiation Facility I.

- Initial energies: 230, 200, 150, 100, 74 MeV
- Energies after degrader: 230 MeV to 6 MeV
- Max intensity: 2 nA (E>200) 10 nA (E<100)
- Flux range $10^2 3 \cdot 10^8$ p/sec/cm²
- Profiles Gaussian-like: FWHM 10 cm
- Max beam diameter of 98 mm
- Options: focused (6 mm ϕ) or flat beam
- User adapted dosimetry and test flow
- Standard calibrations runs and checks / fluxes, profiles, scaling

Proton Irradiation Facility I.

- Initial energies: 230, 200, 150, 100, 74 MeV
- Energies after degrader: 230 MeV to 6 MeV
- Max intensity: 2 nA (E>200) 10 nA (E<100)
- Flux range $10^2 3 \cdot 10^8$ p/sec/cm²
- Profiles Gaussian-like: FWHM 10 cm
- Max beam diameter of 98 mm
- Options: focused (6 mm ϕ) or flat beam
- User adapted dosimetry and test flow
- Standard calibrations runs and checks / fluxes, profiles, scaling

Proton Irradiation Facility II.

- Operation: weekends and nights;
- Flexible, user-specific test arrangement
- Fast, uncomplicated set-up and operation
- Automated irradiations
- Standard ESA sample frame Irradiation usually in air
- Typical laboratory apparatus available (also vacuum chambers)

Proton Irradiation Facility II.

- Operation: weekends and nights;
- Flexible, user-specific test arrangement
- Fast, uncomplicated set-up and operation
- Automated irradiations
- Standard ESA sample frame
 Irradiation usually in air
- Typical laboratory apparatus available (also vacuum chambers)

Electron monochromator – lower energies

- Simple bending magnet
- Strong electron source
- Large vacuum chamber
- Control system constructed
 - Si-detector, Vacuum, Dedicated DAQ
 - XY-table
 - Centering Llaser
 - TV cameras
 - Illumination

High energy electrons in piM1

- Secondary beam area piM1 of PSI large cyclotron
- Positive and negative particles possible
- Clean electrons beams from about 10 MeV up to 100 MeV
- Protons available up to 70 MeV
- Pions and muons from 100 MeV/c to 350 MeV/c

Detectors and dosimetry

- Scintillation or semiconductor detectors to calibrate the beam
- Real time dosimetry uses ionization chambers IC (nominal flux) or detectors (low fluxes)
- Profiles are measured with pixelated IC or detector scans (or luminescence foils)

Verifications: ESA SEU Monitor

- Developed in 2005 by R.H. Sorensen (ESA-ESTEC) and HIREX
- Based on ATMEL AT60166F 16Mbit SRAM, version 2009
- PIF validation by CERN users once per month; many monitors used at different sides
- Easy comparison of measured and expected flux values

PIXCHA pixelated ionization chamber

- Standard ionization chamber components
- Easy data acquisition system
- Easy setup and operation
- Fast beam profiling real time
- Very wide dynamic range
- New version this year

Example: cryogenic tests of SiGe transistors

SiGe technology:

- Good radiation hardness (TID)
- Relatively simple production
- Relatively fast
- Wide operation temperature range
- No need for room temperatures at S/C

Test of transient events (SEU)

Comparison of cross section at room and LN2

Dedicated cryogenic setup

Active measurements

Operation and users 2022 I.

Shifts	- 162
Experiments	- 84
ESA related shifts	~ 118
ESA pool shifts	~ 33

Facility	Shifts	%
PROSCAN	148	91
EMON/PiM1/γ,e-	14	9
TOTAL	162	100

- More than 150 test days per year
- More than 150 visitors annually
- o Users: EU, Switzerland, China and USA
- o About 42 different institutions and companies
- o Test teams from both industry and academia
- o Biggest users are ESA and CERN

Operation and users 2022 III.

Collaboration programs, future

- Long term contracts and collaborations:
 - ESA
 - CERN
- Collaborations with industry:
 - Thales Alenia CH: Radiation monitors RMUs
 - EFACEC/AIRBUS: Radiation monitor for JUICE
 - SE2S PSI Spin-off 🗧
- Collaboration with Academia:
 - ETHZ: new semiconductors
 - CERN: RADNEXT transnational access
 - HSLU, NCBRS: space biology
 - Cube and Nano-sat sub-systems
 - Novel semiconductors
 - Commercials off the shelf COTS
 - Radiation monitors, Space Weather

Upcoming: European Space Deep Innovation Center at PiA by PSI

Wir schaffen Wissen – heute für morgen

High energy electrons in piM1 II.

- Typical intensities: $2 \cdot 10^5 1 \cdot 10^7$ /s and fluxes: $2 \cdot 10^3 5 \cdot 10^5$ /cm²/s
- FWHM between 4 cm and 10 cm
- Well suited for studies of instrument shielding and calibration
- Too low fluxes for TID tests; other test areas studied

Electron beam parameters in piM1 area.

Momentum MeV/c	Intensity s/mA	Flux cm2/s/mA	FWHMx cm	FWHMy cm
17.3	1.16E+05	7.21E+02	10.4	13.2
23.0	3.28E+05	2.57E+03	9.0	12.9
34.5	1.16E+06	1.56E+04	6.6	9.6
57.5	3.08E+06	7.88E+04	5.2	6.6
86.3	5.13E+06	1.69E+05	4.2	5.1
115.0	5.18E+06	2.42E+05	4.4	4.3

Electron flux vs. momentum