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Project Overview
• Risk assessment of SEE events due to high 

energy electrons during the JUICE mission

• Comparison to
• Other sources of SEE

• Jupiter’s protons (low and high energies)
• Heavy-ions near Jupiter
• SEP and GCR protons and heavy-ions

• Typical Earth orbit missions:
• GEO
• LEO, 800 km, 98° inclination

• Project tasks
• T1: Selection of the ICs
• T2: Selection of the test facilities
• T3: Experiment preparation
• T4: Test under radiation
• T5: SEE rate calculations
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Selected SRAMs

Manufacturer Reference Size Process Comment

RENESAS R1RW0416DSB 4 Mbit 180nm Hardened, with specific transient MBU effects

ISSI
IS61WV20488BLL-

10TLI
16 Mbit 65nm Technology node reported by CERN

CYPRESS
CY7C2562XV18-

450BZXC-ND
72 Mbit 65nm QDR-II+ high speed SRAM

ONSEMI N01S830HAT22I 1 Mbit unknown SPI Serial SRAM

- 28nm SRAM 64 Mbit 28nm Provided by IROC commercial partner
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Complex Components

• MCU: ATMEL SAM V71Q21RT Space Version
• 32 bit ARM Cortex M7 based Micro-Controller
• Technology: 65 nm

• XILINX ZU3EG MP-SOC
• Ultrascale+ architecture FPGA
• ARM based Processing System
• Technology: TSMC 16nm FinFET

• Test Goals
• SEL on all power domains
• SEU Characterization

• Memories (SRAM/FLASH)
• FPGA Fabric (CRAM/BRAM/DistRAM/FF/TMR)

• Functional CPU test
• Integer: COREMARK
• Floating point: PiFFT

• Peripheral testing
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ATMEL SAM V71Q21RT

Xilinx ZU3EG



JUICE Environment Overview
• Type of particles

• Trapped Electrons
• Trapped Protons
• Trapped Ions
• Solar Protons
• Heavy-Ions

• Spacecraft shielding scenario
• Standard:  3.7 mm Aluminum
• Electronic vault: 17 mm Aluminum

• Comparison with Earth orbits
• GEO
• LEO, 800km, 98°
• Launch date: 2024/01/01
• Duration: 15 years

Jupiter Galilean Moons: Europa, Ganymede, Callisto

JUICE Spacecraft
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Test Campaign Overview

• 4 Heavy-Ion test Campaigns
• 3 @UCL: Standard 10 MeV/amu cocktail
• 1 @CERN H8: Ultra-high energy Xe ion bean  (30 GeV/amu)

• LET≈3.7MeV/cm²/mg

• High-Energy Electron: CERN VESPER (60, 120 and 150 MeV)

• High-Energy proton: PSI PIF (230 MeV)

• Low-Energy proton: RADEF (500 keV to 6 MeV)
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SAM V71Q21RT - RADEF

CERN H8

28nm SRAM - VESPER ZU3EG - UCL



Test Methodology Description

• SRAM Test platform: FPGA based tester
• Current monitoring
• Dynamic algorithms
• MBU/MCU and SEFI analysis

• Atmel SAM V71Q21RT
• Tests implemented in Software on the DUT
• Re-use of evaluation board

• Xilinx ZU3EG MPSoC
• Dedicated test board designed by IROC
• SEL detection based on current and temperature
• CRAM monitored with Xilinx SEM-IP
• FPGA resources tested from external interface
• Functional benchmarks running on R5 CPUs
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Test Results Overview

• Direct Ionization
• ONSEMI: SEFI 

Mechanism

• ISSI: High SEL sensitivity

• Renesas: Higher LET 
threshold => not 
sensitive to PDI

• ZU3EG: Lower SEU 
sensitivity

29 June 2023
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Radiation Test Results Summary
RENESAS - R1RW0416DSB
• Direct ionization

• Transient MBU effect observed
• LETTH ≈ 20 MeV.cm²/mg

• Can occur during read and write 
operations

• Additional LASER test @CNES
• TMBU comes from unbounded IOs pads

Heavy-ions
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Radiation Test Results Summary
ATMEL - SAM V71Q21RT (Space version) - SEL
• Heavy-Ions: large number of current increase observed (XSSAT ≈ 1E-

3 cm²/DUT)
• Power-cycle needed to recover

• Sensitivity increase with temperature

• Behavior observed under normal and reset conditions

• High-energy protons: only observed at high-temperature
• XSSAT = 5e-9 cm²/DUT
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Radiation Test Results Summary
XILINX ZU3EG - SEL
• Direct Ionization

• Indirect Ionization:
• Also dominated by VCC_AUXIO

• Not sensitive to high-energy electrons
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Hard damage on HDIO input paths

• During radiation test, HDIO were biased at Vmax (3.3V)

• Following to SEL events at high LET (Xe and Ni ions), some 
functional issue was observed on HDIO input paths
• During exploratory HI test campaign, HDIO were used as SRAM address bus

• During next test campaign, a specific HDIO monitoring was set-up
• 3 additional damages observed
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Error Rate Calculation Methodologies

• Heavy-Ions: Standard IRPP Approach
• Sensitive volume thickness = 2 µm

• High-energy protons / electrons:
• For electron, 15 MeV energy threshold was considered *

• Convolutional Product of cross-section and mission flux

• Proton Direct ionization:
• Fit of low-energy cross-section to 2nd order polynomial

• Convolutional Product of cross-section and mission flux

29 June 2023
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𝑆𝐸𝐸𝑅𝐴𝑇𝐸 = න
𝐸

𝑋𝑆𝑆𝐸𝐸 𝐸 × Φ 𝐸 𝑑𝐸

* : M. Tali et al., "Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs," in IEEE TNS, 2018.
A. Samaras et al., "Experimental Characterization and Simulation of Electron-Induced SEU in 45-nm CMOS Technology,"  in IEEE TNS, 2014.
C. Inguimbert et al "Electron Induced SEUs: Microdosimetry in Nanometric Volumes," in IEEE TNS, 2015.



Mission Average SEL Rates

• Per particle type
• HI dominates for ZU3EG and 28 nm SRAM

• Trapped protons dominates for SAM V71Q21RT
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Mission Average SEL Rates
Impact of Shielding
• Increasing shielding has limited impact on SEL rates

• ≈ 1.5X for ZU3EG and 28 nm SRAM

• ≈ 3X for SAM V71Q21RT
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Mission Average SEU Rates
Trapped Electrons
• Phase 2 dominates – consistent with flux comparisons

• Advanced BULK CMOS device are the most sensitives
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Mission SEU Rate

• Trapped protons dominates

• Electron are not a major SEE risk for JUICE mission
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Mission SEU Rate

• JUICE P5 is the strongest constraints for average flux

• SEU rates are 5-10X higher than GEO/LEO
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Mission Average SEU Rates
Impact of Shielding
• Per particle type

• Very efficient for proton direct ionization
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Proton SEU Rates
Direct versus Indirect Ionization
• Direct ionization increases in advanced bulk CMOS technologies

• JUICE trapped protons / solar protons

• LEO Trapped Protons: Indirect ionization is more important
JUICE Trapped Protons P5 JUICE Solar Protons

LEO Trapped Protons Proton flux versus JUIC, LEO and GEO Missions
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Conclusions

• IC characterization for JUICE mission
• 7 components considered
• 8 test campaigns (3 HI, UHE HI, LASER, 2 Protons, electrons)
• New mechanisms investigated (proton direct ionization, high-energy 

electrons)

• Main conclusions
• Main SEL contribution came from heavy-ions or trapped protons
• Main SEU contribution came from trapped protons
• Proton Direct ionization contribution increases in advanced bulk CMOS
• Trapped electron contribution never dominates
• Increasing shielding thickness is efficient for proton direct ionization
• For most devices, JUICE error rate are 5-10X higher than Earth orbits

• Only the 28 nm SRAM JUICE error rate are much higher, due to direct proton ionization 
(20-40X)

Risk assessment of SEE events due to high energy 
electrons during the JUICE mission29 June 2023 22



Questions / Discussions
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