Risk assessment of SEE events due to high energy electrons during the JUICE mission

Maximilien GLORIEUX

Thierry BONNOIT Thomas LANGE Remi GAILLARD Cesar BOATELLA POLO

29th June 2023

Outline

- Project Overview
- Part Selection
- Radiation Test Summary
- JUICE, GEO and LEO Environment Description
- Error Rate Calculations Methodology
- Mission Error Rates Estimations
- Conclusions

Project Overview

- Risk assessment of SEE events due to high energy electrons during the JUICE mission
- Comparison to
 - Other sources of SEE
 - Jupiter's protons (low and high energies)
 - Heavy-ions near Jupiter
 - SEP and GCR protons and heavy-ions
 - Typical Earth orbit missions:
 - GEO
 - LEO, 800 km, 98° inclination
- Project tasks
 - T1: Selection of the ICs
 - T2: Selection of the test facilities
 - T3: Experiment preparation
 - T4: Test under radiation
 - T5: SEE rate calculations

Selected SRAMs

Manufacturer	Reference	Size	Process	Comment
RENESAS	R1RW0416DSB	4 Mbit	180nm	Hardened, with specific transient MBU effects
ISSI	IS61WV20488BLL- 10TLI	16 Mbit	65nm	Technology node reported by CERN
CYPRESS	CY7C2562XV18- 450BZXC-ND	72 Mbit	65nm	QDR-II+ high speed SRAM
ONSEMI	N01S830HAT22I	1 Mbit	unknown	SPI Serial SRAM
-	28nm SRAM	64 Mbit	28nm	Provided by IROC commercial partner

Complex Components

- MCU: ATMEL SAM V71Q21RT Space Version
 - 32 bit ARM Cortex M7 based Micro-Controller
 - Technology: 65 nm
- XILINX ZU3EG MP-SOC
 - Ultrascale+ architecture FPGA
 - ARM based Processing System
 - Technology: TSMC 16nm FinFET
- Test Goals
 - SEL on all power domains
 - SEU Characterization
 - Memories (SRAM/FLASH)
 - FPGA Fabric (CRAM/BRAM/DistRAM/FF/TMR)
 - Functional CPU test
 - Integer: COREMARK
 - Floating point: PiFFT
 - Peripheral testing

ATMEL SAM V71Q21RT

Xilinx ZU3EG

JUICE Environment Overview

- Type of particles
 - Trapped Electrons
 - Trapped Protons
 - Trapped lons
 - Solar Protons
 - Heavy-lons

Jupiter Galilean Moons: Europa, Ganymede, Callisto

- Spacecraft shielding scenario
 - Standard: 3.7 mm Aluminum
 - Electronic vault: 17 mm Aluminum
- Comparison with Earth orbits
 - GEO
 - LEO, 800km, 98°
 - Launch date: 2024/01/01
 - Duration: 15 years

JUICE Spacecraft

Risk assessment of SEE events due to high energy electrons during the JUICE mission

Test Campaign Overview

- 4 Heavy-lon test Campaigns
 - 3 @UCL: Standard 10 MeV/amu cocktail
 - 1 @CERN H8: Ultra-high energy Xe ion bean (30 GeV/amu) LET≈3.7MeV/cm²/mg
- High-Energy Electron: CERN VESPER (60, 120 and 150 MeV) **CERN H8**
- High-Energy proton: PSI PIF (230 MeV)
- Low-Energy proton: RADEF (500 keV to 6 MeV)

28nm SRAM - VESPER

SAM V71Q21RT - RADEF

ZU3EG - UCL

29 June 2023

Test Methodology Description

- SRAM Test platform: FPGA based tester
 - Current monitoring
 - Dynamic algorithms
 - MBU/MCU and SEFI analysis
- Atmel SAM V71Q21RT
 - Tests implemented in Software on the DUT
 - Re-use of evaluation board
- Xilinx ZU3EG MPSoC
 - Dedicated test board designed by IROC
 - SEL detection based on current and temperature
 - CRAM monitored with Xilinx SEM-IP
 - FPGA resources tested from external interface
 - Functional benchmarks running on R5 CPUs

Test Results Overview

- Direct Ionization
 - ONSEMI: SEFI Mechanism
 - ISSI: High SEL sensitivity
 - Renesas: Higher LET threshold => not sensitive to PDI
 - ZU3EG: Lower SEU sensitivity

Radiation Test Results Summary RENESAS - R1RW0416DSB

- Direct ionization
 - Transient MBU effect observed
 - LET_{TH} ≈ 20 MeV.cm²/mg
 - Can occur during read and write operations
 - Additional LASER test @CNES
 - TMBU comes from unbounded IOs pads

29 June 2023

Radiation Test Results Summary ATMEL - SAM V71Q21RT (Space version) - SEL

- Heavy-Ions: large number of current increase observed (XS_{SAT} ≈ 1E-3 cm²/DUT)
 - Power-cycle needed to recover
 - Sensitivity increase with temperature
 - Behavior observed under normal and reset conditions
- High-energy protons: only observed at high-temperature

IROC technologies

11

29 June 2023

Radiation Test Results Summary XILINX ZU3EG - SEL

Direct Ionization

- Indirect Ionization:
 - Also dominated by VCC_AUXIO
 - Not sensitive to high-energy electrons

Hard damage on HDIO input paths

- During radiation test, HDIO were biased at Vmax (3.3V)
- Following to SEL events at high LET (Xe and Ni ions), some functional issue was observed on HDIO input paths
 - During exploratory HI test campaign, HDIO were used as SRAM address bus

- During next test campaign, a specific HDIO monitoring was set-up
 - 3 additional damages observed

Error Rate Calculation Methodologies

- Heavy-Ions: Standard IRPP Approach
 - Sensitive volume thickness = 2 µm
- High-energy protons / electrons:
 - For electron, 15 MeV energy threshold was considered *
 - Convolutional Product of cross-section and mission flux

$$SEE_{RATE} = \int_{E} XS_{SEE}(E) \times \Phi(E) dE$$

- Proton Direct ionization:
 - Fit of low-energy cross-section to 2nd order polynomial
 - Convolutional Product of cross-section and mission flux

*: M. Tali *et al.*, "Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs," in *IEEE TNS*, 2018. A. Samaras *et al.*, "Experimental Characterization and Simulation of Electron-Induced SEU in 45-nm CMOS Technology," in *IEEE TNS*, 2014.

C. Inguimbert *et al* "Electron Induced SEUs: Microdosimetry in Nanometric Volumes," in *IEEE TNS*, 2015.

Mission Average SEL Rates

- Per particle type
 - HI dominates for ZU3EG and 28 nm SRAM
 - Trapped protons dominates for SAM V71Q21RT

Mission Average SEL Rates Impact of Shielding

- Increasing shielding has limited impact on SEL rates
 - \approx 1.5X for ZU3EG and 28 nm SRAM
 - ≈ 3X for SAM V71Q21RT

Mission Average SEU Rates Trapped Electrons

- Phase 2 dominates consistent with flux comparisons
 - Advanced BULK CMOS device are the most sensitives

29 June 2023

Mission SEU Rate

- Trapped protons dominates
- Electron are not a major SEE risk for JUICE mission

18

29 June 2023

Mission SEU Rate

- JUICE P5 is the strongest constraints for average flux
- SEU rates are 5-10X higher than GEO/LEO

19

29 June 2023

Mission Average SEU Rates Impact of Shielding

- Per particle type
 - Very efficient for proton direct ionization

SEU Error Rates Improvement with 17 mm Al vs 3.7 mm Al Shielding

20

Proton SEU Rates Direct versus Indirect Ionization

- Direct ionization increases in advanced bulk CMOS technologies
 - JUICE trapped protons / solar protons

electrons during the JUICE mission

21

29 June 2023

Conclusions

- IC characterization for JUICE mission
 - 7 components considered
 - 8 test campaigns (3 HI, UHE HI, LASER, 2 Protons, electrons)
 - New mechanisms investigated (proton direct ionization, high-energy electrons)
- Main conclusions
 - Main SEL contribution came from heavy-ions or trapped protons
 - Main SEU contribution came from trapped protons
 - Proton Direct ionization contribution increases in advanced bulk CMOS
 - Trapped electron contribution never dominates
 - Increasing shielding thickness is efficient for proton direct ionization
 - For most devices, JUICE error rate are 5-10X higher than Earth orbits
 - Only the 28 nm SRAM JUICE error rate are much higher, due to direct proton ionization (20-40X)

Questions / Discussions

